
EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 1

A Pitch Shifting Reverse Echo Audio Effect
Jingjie Zhang, Ziheng Chen

Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
660 Lomita Drive, Stanford, CA 94305, USA

[jingjiez|zihengc]@ccrma.stanford.edu

Abstract—Reverse echo is a type of audio effect that delays
the input audio samples and plays them back in a reverse order.
Pitch shifter effect, on the other hand, shifts the pitch of the input
audio signal by time-stretching and re-sampling. In this work, the
reverse echo effect is combined with the pitch shifter to create
harmonic reversed echoes. The algorithm is implemented and
tested on iOS platform in real time.

I. INTRODUCTION

D IGITAL audio effects are algorithms that adjust and
enhance the output audio signal of a musical instrument.

Reverse echo, also known as backwards echo, is an audio
effect that produces echoes of the input audio recordings that
are played backwards, which is widely used by various modern
musicians. Like many other time-based audio effects, reverse
echo is based on delay line manipulations, which involves the
control of read and write pointers of the delay line, however,
the write pointer in the reverse echo effect is handled in a
slightly different way.

Real-time pitch shifting is a classic topic in audio signal
processing. Different methods like Synchronous Overlap-Add
(SOLA), Sinusoidal Modeling, and Phase Vocoder are widely-
used. Phase-vocoder-based pitch shifting algorithm utilizes
phase insensitivity of human hearing, which decompose each
audio block into frequency bands and manipulate their phase
to keep audio continuity. It keeps most of the original audio
information and performs well for music signals.

In this project, we integrate the phase-vocoder-based pitch
shifter algorithm into the reverse echo effect so that the
original audio input can be mixed with harmonic reversed
echoes and hence, enrich the musicality of the audio output.

The rest of this article is organized as follows: Section II
gives a detailed review of the basic delay line operations and
two reverse echo algorithms. In Section III, the principles and
procedures of the pitch shifter algorithm are illustrated. Section
IV demonstrates the system structure and implementation
scheme, while the results are presented and discussed in
Section V. Finally, Section VI summarizes the project and
proposes several future directions.

II. REVERSE ECHO ALGORITHM

In this section, the basic concept and operations of digital
delay lines are reviewed. On the basis of that, two different
reverse echo effect algorithms are derived.

A. Digital Delay Lines and Fixed-Length Delay Systems

A digital delay line is a digital buffer that stores the input
data samples for several clock cycles and then pops them to
the output. One naive implementation of a N -sample delay
system could be a length-M (M > N) array with a pointer
indicating the read/write position. In each clock cycle, one
data sample whose position in the array is referred by the
pointer will be sent to the output and then overwrote by the
input sample. The pointer will move one step forward in the
array at the end of each clock cycle. The length of the data
array is set to M so that it is capable of realizing any delay
lengths shorter than M . However, when changing the delay
length, such a structure will produce discontinuities in the
output signal, which is not acceptable in audio effects that
are based on delay length manipulations.

To produce a smooth transition between different delay
lengths, circular delay lines and interpolation methods are
introduced in practical delay line implementations.

Input Pointer
Output Pointer

Cicular
Delay Line

Fig. 1. An example of a circular delay line.

As presented in Fig. 1, a circular delay line, usually very
long, has an input pointer that keeps moving one step forward
in each clock cycle and an output pointer chasing the input
pointer along the buffer. If the distance between the two
pointers is fixed, the system becomes a fixed-length delay
system, but when the delay length changes, such a structure
guarantees that the data samples near the output pointer are
all recorded in the same time period and thus will not result
in huge discontinuities. In practical audio software, causal
smoothing-filters [1] are always applied to the controllers of
the parameters, such as delay lengths, to make sure their output
curves are continuous. As a result, the movements of the output
pointer will always be within adjacent samples in the buffer.

mailto:jingjiez@ccrma.stanford.edu
mailto:zihengc@ccrma.stanford.edu

EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 2

To further achieve the continuous changes in delay length,
delay lines must have the capability of dealing with non-
integer delay lengths. Hence, in practical delay line imple-
mentations, certain interpolation methods are usually applied
to the data samples in the buffer to evaluate the data value
in-between the sample interval.

Output Pointer

α

1 - α

Fig. 2. A linear interpolation filter applied in a delay line.

Among all these interpolation methods, linear interpolation
is the most flexible and efficient one. As demonstrated in
Fig. 2, to realize a non-integer delay length N + α using
linear interpolation, where N is the integer part and α is the
fractional part, an interpolation filter is applied to the output
sample and its neighbor, which gives an approximation x̂ of
the output signal x at the non-integer index n−N − α:

x̂(n−N −α) = (1−α) · x(n−N) +α · x(n−N − 1). (1)

The relationship in (1) can also be simplified to save one
multiplication:

x̂(n−N−α) = x(n−N)+α·[x(n−N−1)−x(n−N)]. (2)

B. Echo and Reverse Echo Algorithms

As shown in Fig. 3, a simple echo effect can be constructed
on the basis of a delay line module. To create decaying echoes
of the input signal, the delayed signal is sent back into the
delay line after multiplied by a feedback gain that is smaller
than 1. The original signal also needs to be mixed with the
output signal, otherwise only echoes can be heard.

Delay

Feedback Gain

Dry Mix

Fig. 3. The signal flow diagram of a simple echo effect.

On the other hand, reverse echo algorithms require a differ-
ent strategy to operate the delay lines. First of all, to replay the
delayed samples backwards, the output position pointer must
move in the direction opposite to the input pointer. In addition,
since the total length of the circular delay line is finite, the
input signal can only be reversed block by block. If the block
size is large enough, considerable audio data can be included

in each block. This constant block size can also be called the
reverse delay length, compared to the ”forward” delay length,
which in this case keeps changing as the output pointer moves
away from the input pointer.

Fig. 4 illustrates the positions of the input and output
pointers at some crucial points in the reverse delay process.
The input pointer’s initial position I1 corresponds to the first
sample in the current block, while the output pointer begins
at O1, which is the last sample in the previous block. As
the input pointer keeps moving forward to fill the current
block, the output pointer goes backwards to replay the previous
audio block in a reverse order. By the end of this stage, the
input pointer will stop at I2, which is the last sample in the
current block, and the output pointer will stop at O2, which
corresponds to the first sample of the previous block. In the
next clock cycle, the input pointer will move one step forward
to I3 as usual, while the output pointer, instead of moving
backwards as expected, will jump to O3. At this point, the
relative positions between input and output pointers is back
to the initial case, and the process described above will be
repeated. It is not difficult to find that the maximum block
size is half the total length of the circular delay line.

I1

O1

I2

O2

I3O3

Fig. 4. An example of the input and output pointer positions at different
stages in the reverse delay process.

The sudden transition of the output pointer position from
O2 to O3 will result in clicks in the output audio signal.
One way to suppress such clicks is to multiply the output
signal with a gain function that decreases to zero as the output
pointer moves closer to the boundary. A simple example of
such functions can be:

G(
Delay

Delaymax
) = 4 · Delay

Delaymax
· (1− Delay

Delaymax
), (3)

where Delay is the current delay length defined by the
distance between input and output pointers, and Delaymax
is twice the block size. Therefore, the ratio of Delay to
Delaymax is always between 0 and 1. Fig. 5 demonstrates
the behavior of the gain function G(x) when 0 ≤ x ≤ 1,
which meets the requirements for the click suppression.

EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

0.2

0.4

0.6

0.8

1

1.2
G
(x
)

Fig. 5. G(x) = 4 · x · (1− x), 0 ≤ x ≤ 1.

Replacing the delay module in Fig. 3 with a reverse delay
module that carries out the procedures illustrated above will
result in a new effect that produces both reverse and forward
echoes. As demonstrated in Fig. 6, the input signal is delayed
and reversed to create the first echo, however, this reversed
echo is sent back into the reverse delay module so that the
second echo will be a repeatedly reversed echo and hence, a
forward echo. In other words, the output echoes of this system
is by turns reversed and forward.

Reverse

Feedback Gain

Dry Mix

Fig. 6. The signal flow diagram of a reverse and forward echo effect.

To construct a pure reverse echo effect, the reverse delay
module is connected with the forward echo system in Fig.
3, so that the first reversed echo will not go back into the
reverse delay module again, as shown in Fig. 7. Instead, the
first reversed echo is sent into both the output and the forward
echo system to produce the following reversed echoes.

Reverse
First Echo

Delay

Feedback Gain

Dry Mix

Fig. 7. The signal flow diagram of a pure reverse echo effect.

III. PITCH SHIFTER ALGORITHM

Pitch shifter is implemented using real-time phase vocoder
algorithm. The input audio signal is first time-stretched and
then re-sampled to the original length to generate pitch-shifted
output. In this section, we review the basic concept and
implementation details of phase vocoder algorithm.

A. Time-Streching

There are mainly 3 stages in using phase vocoder to do
time-stretching: analysis, spectral manipulation, and synthesis
[2]. Fig. 8 shows the basic workflow of phase vocoder algo-
rithm. Basically, we divide audio signals into segments (with
overlap), transform each time-domain segment into frequency
domain and modify its phase to keep coherence, and then
synthesis these segments with a different step size. The time-
stretching ratio is determined by:

ratio = hsyn/hana, (4)

where hsyn is the reconstruction step size in synthesis stage
and hana is the decomposition step size in analysis stage. For
example, if hsyn is twice as large as hana, the duration of the
audio signal will be doubled.

In the following paragraphs, we will explain in detail two
key components used in time-stretching algorithm.

Fig. 8. Phase vocoder workflow [3].

EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 4

1) Short Time Fourier Transform (STFT) and Constant
Overlap-Add Windows: In the analysis stage, we decompose
signals into short segments by multiplying a series of over-
lapped windows. Short Time Fourier Transform is then applied
on each windowed segments so that we can manipulate its
frequency characteristics at next stage. To perfectly reconstruct
the signal at the synthesis stage, the overlapped windows must
satisfy the following equation:

∞∑
r=−∞

w(n− rR) = C, (5)

where w is the window function, n is the sample number
in each window, R is the segment step size, r is the index
of each overlapped window, and C is a constant number. The
signal can be perfectly reconstructed as long as the overlapped
window functions summed up to a constant.

Different window functions may satisfy (5) with different
overlapped step size. In our implementation, we choose Han-
ning Window with 75% overlap-add at synthesis stage, that is,
the step size is a quarter length of the window size.

2) Spectral Manipulation: Since the decomposition step
size at analysis stage and the reconstruction step size at
synthesis stage are different, phase adjustment needs to be
applied on each segment before synthesis to keep phase
coherence between adjacent segments.

Since different frequency component has different phase
shift, we first estimate the frequency components contained
in each segment. To estimate frequencies that lies in-between
frequency bins, the analysis phase difference in time direction
between segments is used. Assume the true value of the
frequency we are estimating is Ω(rad/s), and bin k is the
closest bin to Ω, then we have:

φk(m+ 1)− φk(m) + 2πL = hana ∗ Ω. (6)

Note phase values for each segment are calculated by
arctan function, where the results are wrapped to the range
(−π, π]. In equation (6), φk(m) is the wrapped phase value
of bin k in frame number m, 2πL is an unknown constant
representing how much phase is wrapped, and hana is the
decomposition step size (in second) at analysis stage.

The true frequency value Ω can be decomposed to two parts:

Ω = Ωk + ∆k, (7)

where Ωk is the closest bin frequency to Ω, and ∆k is
the difference between them. Using this property, and assume
| hana ∗2π∆k < π |, we can avoid the influence of the phase-
wrapping term 2πL by modulo 2π to both side of the equation
(6). We can get:

∆k∗2π∆k = (φk(m+1)−φk(m)−hana∗2πΩk)mod2π. (8)

We can then calculate ∆k from equation (8) and get
estimated frequency Ω using equation(7)

After estimating each frequency component in a segment,
the adjusted phase of this segment is calculated by:

φ′k(m+ 1) = φ′k(m) + hsyn ∗ Ω, (9)

where φ′k(m) is the adjusted phase value of bin k in frame
number m, hsyn is the reconstruction step size in synthesis
stage.

B. Re-sampling

After time-stretching, we re-sample the signal to its original
length to generate pitch-shifted signal. The re-sample factor
is the same as the time-stretching ratio in equation (4). For
example, if we time-stretched the signal to twice its original
the duration, we then down-sample the time-stretched signal
by 2 to restore its original length. The frequency components
in the output signal then become doubled, in other words, the
pitch is up-shifted by an octave.

IV. IMPLEMENTATION SCHEME

The signal flow diagram of the whole system is presented in
Fig. 9. The input signal is first pitch shifted and then sent into
the reverse echo system to produce harmonic reversed echoes.
Both reverse echo algorithms discussed above are embedded
into the system so that users are able to select whether the
echoes are pure reversed or not.

In the delay line implementation, relative output position is
introduced instead of an absolute output position pointer so
that the operations on the output pointer in each clock cycle
can be avoided. In other words, the output position is actually
determined by subtracting the non-integer delay length from
the current position of the input pointer in the circular buffer.
Such an implementation strategy is perceptually more close to
the concept of a delay line, especially with a non-integer delay
length, while managing a separated absolute output pointer
might cause some mistakes if not carefully handled.

It is also worth mentioning that the quality of the pitch
shifting effect based on the phase vocoder strongly depends on
the audio buffer size. Only with a buffer size larger than 2048
samples can the system produce a decent pitch shifted output
signal. Thus, to reduce the overall latency of the system, while
using a small 512-sample audio buffer, an internal buffer with
a size of 4096 samples is introduced so that the pitch shifter
algorithm is carried out every 8 audio blocks, producing the
output signal for the next 8 audio output blocks.

In addition to the audio effects described in the previous
sections, a simple Feedback Delay Network (FDN) rever-
beration effect [4] is applied to the final output of this
system to improve the quality of the whole effect. The FDN
reverberation effect uses multiply short delay lines to simulate
the early reflections of an original sound in an acoustic
space and introduces a lossless feedback matrix to realize the
reverberation process.

V. RESULTS

The guitar effect system illustrated in the previous sections
is implemented using Swift and C++ on the iOS platform.
In this section, the output signals of the reverse echo and
pitch shifter effects are evaluated separately, and the design
and implementation of the graphical user interface is also
presented.

EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 5

Reverse

First Echo

Delay

Feedback Gain

Dry Mix

Reverse

Feedback Gain

Pitch
Shifter

Fig. 9. The system diagram of the whole pitch shifting reverse echo effect.

A. Reverse Echo Effects

Fig. 10 shows the output signal of a reverse and forward
echo effect with a feedback gain of 0.8 and a block size of
11025 samples under the sample rate of 44.1 kHz. According
to the result, the decaying echoes created by the effect are by
turns reversed and forward.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

-1

-0.5

0

0.5

1

O
ut

pu
t

Fig. 10. The output signal of a reverse and forward echo effect.

The output signal of a pure reverse echo effect is also
presented in Fig. 11 with similar parameter settings, while
in this case, the output echoes are all reversed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

-1

-0.5

0

0.5

1

O
ut

pu
t

Fig. 11. The output signal of a pure reverse echo effect.

B. Pitch Shifter Effect

Fig 12 shows the result of a pure sinusoid processed by
pitch-shifting algorithm. The top graph is the original signal,
which is a 4-second long, 5Hz sinusoid sampled at 4KHz.
The middle graph illustrates the result of the original signal
time-stretched to twice the length. The bottom graph shows
the result of re-sampling the time-stretched signal to restore

its original length, in which case the frequency becomes twice
the original frequency (pitch is scaled up by an octave).

Fig. 12. A pure sinusoid time-stretched and pitch-shifted

C. Graphical User Interface Design

The user interface should be capable of controlling certain
parameters such as the delay length of the echoes, the ratio
of the wet signal mixed in the total output and the feedback
gain. As presented in Fig. 13, three sliders controlling such
parameters are included in the GUI implementation on iOS
platform. In addition, the users are able to switch between
the pure reverse echo effect and the reverse and forward echo
effect using the ”Pure Reverse” switch. It is also important
that the whole effect can be disabled or enabled by the main
switch at the bottom.

VI. CONCLUSION

In this project, the phase vocoder pitch shifting algorithm
is combined with two reverse echo effect to form a pitch

EE 264: DIGITAL SIGNAL PROCESSING - FINAL PROJECT REPORT - WINTER 2018 6

Fig. 13. The GUI design on iOS platform.

shifting reverse echo audio effect system. An internal buffer
is introduced to the pitch shifter so that the high quality of the
pitch shift can be maintained in a low latency audio system
with a small audio buffer size.

Currently, the input audio signal is shifted up by one octave
and sent into the reverse echo system. In the future, another
signal path can be added to the system where the input signal
is shifted up by two octave and sent into another reverse echo
system with a different delay length to add more harmonics
to the total output signal.

In addition, the phase-vocoder-based pitch shifter module
implemented in this project still needs a relatively large buffer
to maintain the quality of the pitch shifting, while it is possible
to use more advanced algorithms that can work well with a
buffer size of 512 samples or less. With a more efficient pitch
shifter module, it is also interesting to experiment with the
location of this module in the echo effect system and see its
impact to the audio effect.

VII. ACKNOWLEDGEMENTS

Thanks to Professor Fernando Mujica for his supportive
guidance throughout this project.

REFERENCES

[1] J. O. Smith. Convolution Example 2: ADSR Envelope. Mathematics of
the Discrete Fourier Transform (DFT) with Audio Applications. online
book, 2007 edition, https://ccrma.stanford.edu/∼jos/mdft/Convolution
Example 2 ADSR.html, accessed Mar. 2018.

[2] J. L. Flanagan and R. M. Golden. Phase vocoder. in The Bell System
Technical Journal. vol. 45, no. 9, pp. 1493-1509, Nov. 1966.

[3] William A. Sethares. A Phase Vocoder in Matlab. http://sethares.engr.
wisc.edu/vocoders/phasevocoder.html, accessed Mar. 2018.

[4] J. O. Smith. FDN Reverberation., Physical Audio Signal Processing.
online book, 2010 edition, https://ccrma.stanford.edu/∼jos/pasp/FDN
Reverberation.html, accessed Mar. 2018.

https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html
https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html
http://sethares.engr.wisc.edu/vocoders/phasevocoder.html
http://sethares.engr.wisc.edu/vocoders/phasevocoder.html
https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html
https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html

	Introduction
	Reverse Echo Algorithm
	Digital Delay Lines and Fixed-Length Delay Systems
	Echo and Reverse Echo Algorithms

	Pitch Shifter Algorithm
	Time-Streching
	Short Time Fourier Transform (STFT) and Constant Overlap-Add Windows
	Spectral Manipulation

	Re-sampling

	Implementation Scheme
	Results
	Reverse Echo Effects
	Pitch Shifter Effect
	Graphical User Interface Design

	Conclusion
	Acknowledgements
	References

