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In a new formulation for digital phase-locked loops, loop-filter 
constants are determined from loop roots that can each be 

selectively placed in the s-plane on the basis of a new set of 

parameters, each with simple and direct physical meaning 

in terms of loop noise bandwidth, root-specific decay rate, or 

root-specific damping. Loops of first to fourth order are treated 
in the continuous-update approximation (ELT + 0) and in a 

discrete-update formulation with arbitrary BLT. Deficiencies of 

the continuous-update approximation in Iarge-BLT applications 

are avoided in the new discrete-update formulation. A new method 

for direct, transient-free acquisition with third- and fourth-order 

loops can improve the versatility and reliability of acquisition with 
such loops. 
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Previous analyses (e.g., [ 1, 21) of digital 
phase-locked loops (DPLLs) are based on the 
traditions of analog loops and introduce analog 
considerations, such as loop-filter time constant\ and 
uncompensated gain variations, that are unnecessary 
for “fully digital” loops. This reliance on analog 
tradition makes digital-loop analysis unnecessarily 
cumbersome and impedes the progress of analysts with 
little analog training. Theory for digital loops can be 
developed from first principles without reference to 
analog concepts. With an appropriately formulated, 
fully digital analysis, one discovers that DPLL 
theory and design become more straightforward and 
understandable (particularly for third- and fourth-order 
loops) and that loop performance is more easily 
controlled for “high-gain” loops. 

determined from loop roots that can be selectively 
placed in the s-plane in pairwise fashion on the basis 
of a new set of independent parameters, where each 
parameter has a simple and direct physical meaning 
in terms of Hoop noise bandwidth, root-specific decay 
rate, or root-specific damping. For example, a simple 
choice of parameter values will automatically give a 
loop a selected loop bandwidth and supercritically 
damped behavior (i.e., all roots real, negative, and 
equal). Thus, the need to solve for root location as 
a function of traditional loop parameters (e.g., BL, 
r ,  and k for a third-order loop [2]) is eliminated and 
analysis is simplified. The new parameterization is 
made feasible in a practical sense by the fact that 
digital loops can often be designed so that they do 
not suffer significantly from the effects of amplitude 
variations. That is, variations in signal amplitude, due 
to either gain instability or signal-power changes, 
can often be accounted for by using a normalized 
phase extractor [3]. In this case, a fully digital DPLL 
does not require the analysis or precautions [e.g., 21 
necessitated in other DPLL designs by potential 
amplitude variations. Even when amplitude variations 
cannot be removed, the new formulation can be used 
to generate a reference or target configuration whose 
response can then be tested with respect to amplitude 
variations. 

Previous analyses (e.g., [l, 21) of discrete-update 
(DU) loops have started with the closed-loop equation 
in the “continuous-update’’ (CU) limit in which BLT .--) 
0, where BL is the loop noise bandwidth and T is the 
loop update interval. For sufficiently small BLT (e.g., 
BLT 5 0.02)1, the CU approximation can provide an 
adequate starting point for analysis and design of DU 
loops. When BLT is increased in this approximation 
to larger, high-gain values, however, loop roots move 
away from their initial small-BLT damping and the 
loop diverges from expected behavior. Furthermore, 
actual loop noise bandwidth increases more rapidly 

In the new formulation, loop-filter constants are 
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than the input “loop parameter bandwidth” and 
must be separately computed. To overcome these 
shortcomings, a solution for DU loops is developed 
in which BL is true loop noise bandwidth for all 
allowed values of BLT, and root locations follow 
constant-damping paths as a function of BLT. These 
features, which are an automatic benefit of the new 
approach to parameterization mentioned above, can 
provide, for example, supercritically damped response 
for all allowed BLT values. Both the CU and DU 
approaches can be applied to a “delay-locked” loop, 
implemented, for example, to steer one clock into 
synchronization with a second clock on the basis of 
measured synchronization error. 

The analysis is extended to fourth-order loops 
because of the potential advantages of such loops. 
In some spacecraft applications, for example, loop 
bandwidth can be set to a smaller value for a 
fourth-order loop than for a third. Consequently, lower 
signal strengths can be reliably tracked. Fourth-order 
DPLLs, unlike their analog counterparts, are easy to 
design and implement, given the new parameterization. 
Accurate placement of loop roots results from a simple 
selection of parameter values rather than complicated 
analog circuit design. 

Acquisition in third- and fourth-order loops should 
be carefully crafted. A past approach for a third-order 
loop has been to acquire first with a second-order loop 
with “wide bandwidth” and then hand over tracking to 
a “narrow bandwidth” third-order loop. This approach 
sacrifices the opportunity of directly acquiring weaker 
signals with the narrow-bandwidth third-order loop. 
Given sufficient a priori phase information, high-order 
DPLLs, unlike similar analog loops, can be easily 
initialized by setting all loop sums so that such digital 
loops can acquire directly, without first acquiring with 
a lower-order loop. Furthermore, if sufficient a priori 
information is supplied, DPLLs will start off tracking 
in-lock, with no transients. A priori information, in 
the form of signal phase and its derivatives, can be 
supplied, for example, on the basis of fast Fourier 
transform (FFT) analysis and/or spacecraft trajectory 
information. 

To establish a foundation for analysis, a high-level 
description of a DPLL is presented in Section 11. For 
loops of first to fourth order, Section I11 uses the 
new parameterization to derive a CU-limit solution 
while Section IV develops a systematic approach from 
which numerical, controlled-root solutions to the 
DU loop can be derived. The analysis is organized 
so that a step-by-step comparison of the DU and 
CU formulations can be easily made. Solutions are 
given for loops with either phase and phase-rate 
feedback or phase-rate-only feedback, and with the 
computation delay for closing the loop set to either 
zero or one update interval. To tie in with traditional 
analysis, the new loop parameters are related to old 
loop parameters in the CU limit. Section V presents a 
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Fig. 1. Schematic illustration of DPLL with phase/phase-rate 

method for direct transient-free acquisition with third- 
and fourth-order loops, a method that can improve 
the versatility and reliability of acquisition with such 
loops. To illustrate the performance of high-BLT 
loops, Section VI presents results for two measures 
of loop performance: mean time to first cycle slip and 
steady-state phase error. 

I I .  HIGH-LEVEL DESCRIPTION OF A DPLL 

A. Elements of a DPLL 

The block diagram in Fig. 1 shows the basic 
elements of a DPLL. Since detailed explanations of 
these elements can be found elsewhere (e.g., [3 ] ) ,  
they will not be reintroduced here. The example 
DPLL shown in Fig. 1 is based on “immediate update” 
of the loop filter (i. e., no computation delay) and 
feedback of phase as well as phase rate. Alternate 
DPLL designs might feed back only phase rate 
and/or have a substantial computation delay 
(“transport lag”). 

An incoming signal is sampled in quadrature at 
a high rate (fs) and then counter-rotated sample by 
sample at this high rate with model phasors generated 
by a number-controlled oscillator (NCO) as directed by 
loop feedback. The resulting complex counter-rotated 
signal, which should have very low frequency, is then 
accumulated over an update interval of length T in 
order to reduce the data rate. A phase extractor then 
processes the resulting complex sum to produce a 
value for residual phase for the given interval (nth). 
Two choices for phase extractor are shown, arctangent 
and normalized sine extractor [3]. (In a normalized sine 
extractor, estimated signal amplitude is used to remove 
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amplitude effects from the Q component.) For an ideal 
phase extractor, the nth residual phase & is obtained 
in units of cycles and is equivalent to the difference of 
the nth input signal phase q5n and the nth model phase 
$n as obtained through feedback: 

$ n  = $n  - $n (1) 

with each referenced to the center of the sum 
interval. Following the usual linear model, the theory 
presented here will be based on the phase-extractor 
approximation of (1). In practice, actual residual 
phase can deviate from this linear model due to 
nonlinearity in the phase extractor, cycle ambiguities, 
or inaccurate amplitude normalization. Nevertheless, 
given a well-designed loop and adequate signal-to-noise 
ratio (SNR), the approximation of (1) will provide an 
accurate model for loop behavior when the tracking 
error is sufficiently small. In a delay-locked loop, the 
residual delay does not necessarily suffer nonlinearities 
or ambiguities and the linear model can be an accurate 
model over the full operating range. 

Residual phase is passed to the loop filter to assist 
in the generation of model phase rate. The loop filter 
generates the estimate of phase rate for the (n + 1)th 
interval in the form of phase change per update 
interval, #n+lT. 

in Fig. 1, an estimate of the next model phase, the 
(n  + l)th, is projected ahead to interval center by 
adding this estimated phase change to the previous nth 
model phase: 

In a loop with phase and phase-rate feedback, as 

4 n + l  = 6 n  + d n + l ~ .  (2) 

The ( n  + 1)th model phase, along with estimated phase 
rate, is used at the completion of the nth accumulation 
to initialize the phase and rate registers of the NCO 
in a manner [3] that causes the NCO to produce over 
the (n + 1)th interval, phase values characterized by 
said rate and center-interval phase. (That is, the rate 
register of the NCO is initialized with a rate value 
equivalent to q5n+lT and the phase register with a 
phase value equal to model phase minus one half 
interval of NCO phase change, & + I  - ;,,+;T/2. With 
such initialization, the NCO will generate $,,+I at 
mid-interval as desired.) 

In a loop with rate-only feedback, on the other 
hand, the NCO rate register is updated at the end of 
the nth accumulation with a value equivalent to the 
(n + 3)th rate estimate. The NCO phase register is left 
untouched so that NCO phase is “continuous” from 
interval to interval. The center-interval phase values 
that are applied by the NCO as a consequence of this 
feedback approach can be obtained through NCO 
modeling according to the expression 

J n + l =  $n + f ( a n + l ~  +  in^) (3)  

where a half interval of phase change accumulates due 
to the nth rate and another half due to the (n  + 1)th 
rate. 

loop is closed and a new value for residual phase is 
produced to repeat the process. 

Based on either of these feedback approaches, the 

B. Loop Filter 

A conventional Nth-order digital loop filter uses 
residual phase values $ i  to estimate phase rate for the 
(n + 1)th interval according to 

i = l  i = l  j - 1  

where $J,+~T is phase change per update interval T 
and where the sequence extends to the X N  term for an 
Nth-order loop. The loop constants Kl are specified 
below. The variable n, is the computation delay [3] ,  
with n, = 0 for “immediate” updates and n, = 1 for 
a computation delay of one update interval. If update 
computations are sufficiently fast, immediate updates 
can be applied, but possibly at the cost of a small 
amount of sampled data lost while completing the 
update computations. 

I I I. CONTINUOUS-UPDATE APPROXIMATION 

A. Closed-Loop Equation 

In many applications, the update interval T is 
much shorter than all other filter time scales, and 
considerable insight may be gained by writing (4) in 
the CU limit, T -+ 0. To facilitate this, we can define 
without loss of generality CU loop constants ~i by 
means of the relation 

K, = K,T‘ for I = 1, ..., N (5 )  

so that (4) becomes 

n - n ,  n - n ,  
$ n + l -  $rr 
~- A = Kl$n-n ,  T6i + ~3 C T k T $ l  

+ K 4 E  T k T k T $ k  + . (6) 

1 = 1  i = 1  / = I  

r = l  ]=I k - 1  

where estimated phase rate has been rewritten on 
the basis OF (2) under the assumption that the NCO 
is updated in both phase and phase rate. In the limit 
T --+ 0, T can be replaced by dt ,  the first term becomes 
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a derivative, and the sums become integrals: 

+ 6 4  dt' l' dt" 1;'' dt"'$(t"') + . . (7) 

where to is the starting time for accumulation and 4 is 
the continuous form of (1): 

$(t)  = $(t> - &t>. (8)  

Thus, in this limit, the basic equation governing 
"NCO rate" is the same equation that governs 
the voltage-controlled oscillator (VCO) rate of an 
analog loop, given perfect integrators. Note that, for 
sufficiently small T ,  all DU. loops are described by 
(7) and (S) ,  so that distinctions such as computation 
delay and phase and phase-rate feedback versus 
phase-rate-only feedback are not significant with regard 
to loop behavior. 

Solutions of the closed-loop equation can be 
based on the theory of differential equations after 
substituting (8) in (7) and differentiating the result 
N -- 1 times with respect to time: 

dN-' A dN-2 4 + . . .  + K N $  
d N  A 

d t N @ + K 1 d t N - l Q +  K2drN_2 - 

dN-1 dN-2 
= K1- $ + K 2 d t N _ ' 4  + " '  + K N Q .  (9) 

Solution of this differential equation gives the behavior 
of model phase 4 in response to input signal phase $ 
when Q, - 9 is small. 

dtN-l 

B. Transfer Function and Loop Noise Bandwidth 

To find the frequency response of the loop [4], take 
the Laplace transform of both sides of (9), and utilize 
the relation 

c { F} = s"L{$(t)} 

where @(s) and @(s) are the Laplace transforms of 
$(t)  and $ ( t ) ,  respectively. TFe closed-loop transfer 
function H ( s )  is defined by @(s) = H(s)@(s) ,  so we 
have 

The frequency response of the loop is obtained by 
substituting s = i 2 ~ f  in (12), where f is frequency in 

TABLE I 
Loop Bandwidth From Loop Constants in CU Approximation 

fTd order 

Hertz. The single-sided loop noise bandwidth BI. for the 
closed loop is defined by 

Q3 

~ B L  5 lQ3 I H ( i 2 ~ f ) l ~ d f .  (13) 

This integral can be evaluated on the basis of of [5, 
eqn. (3.112)], to find BL as a function of K I ,  ~ 2 , .  . . ,KN 

in the CU limit. The results are summarized in Table I 
for loops of first to fourth order. 

C. Solution to the Homogeneous Equation 

Solutions to the homogeneous form of (9) (i.e., 
with $(t)  = 0) provides information as to the transient 
behavior and stability of the loop, to the extent that 
the linear approximation of (1) is a valid model for 
residual phase. When the roots are unequal (i.e., 
nondegenerate), the solution to the homogeneous 
equation is 

N 

$(r) = C a i e s i t  (14) 
i = l  

where each si is a root of the characteristic equation 

S N  + KILTN-' + K 2 S N - *  + " .  + K N  0 (15) 

and where the ais are amplitudes to be determined 
by the initial conditions. (Similar equations can 
be developed for the degenerate cases, but such 
equations are unnecessary if the degenerate cases 
are approximated as nondegenerate by introducing an 
infinitesimal offset between equal roots.) For the loop 
to be stable, the loop constants must be set to values 
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that cause all roots to fall in the left half plane. With 
such roots, all terms in (14) will decay exponentially. 

D. Loop Constants as a Function of Loop Roots 

To express the CU loop constants, the KS, as a 
function of the roots, equate the coefficient of each 
term in (15) with the coefficient of the like term in the 
same polynomial factored into its roots: 

(s - sI)(s - s2) ’ ’ ’ (s - S N )  = 0. (16) 

The K’S are then given by 
N 

K 1  = - c S j  

i 

& N  = ( - 1 ) N ( s 1 s 2 s 3 ” . S N ) .  (20) 

Thus, if the roots are known, the loop constants can be 
easily computed. 

E. Parameterization of Loop Roots 

Loop noise bandwidth BL provides us with one 
independent (selectable) loop parameter with useful 
physical significance. Traditional loop theory specifies 
additional parameters at this point (e.g., r ,  k ,  c2, U,, 

TI, 5 3 )  to complete the parameterization. However, 
since traditional parameters are either inappropriate 
for digital loops or have indirect meaning with respect 
to transient behavior for loops higher than second 
order, they are less useful than more carefully chosen 
parameters. 

parameterizing the roots of higher order loops can be 
gained by considering the nature of the roots for first- 
and second-order loops. The root of a first order loop 
( N  = 1 )  from (15) is a real number that determines the 
decay rate of the transient response. Thus, a first-order 
loop can be trivially parameterized with a real number 
p representing a decay rate, with the root given by 

For a second-order loop, on the other hand, the 
two roots are solutions to the quadratic form (N = 2) 
of (15) and are given by 

Insight as to a systematic approach for 

S = -p  = -K1 .  

This result suggests that the simplest form for 
parameterizing second-order roots is obtained 

through use of the discriminant q2 5 1 - 4 ~ : 2 / ~ ;  and a 
decay-rate parameter defined by p E 61/2.  These new 
parameters yield 

s = -P( l& q) .  (22) 

Note that both P and q2 are real numbers and that TI 
is either a real number or a purely imaginary number 
depending 011 the sign of q2. As is well known from 
second-order loop theory, the sign of the discriminant 
determines loop damping: 

v2  > 0 

7’ = 0 

7’ < 0 

Since q2 determines damping, it is referred to as 
the damping parameter. For a second-order loop, 
the damping parameter is related to the traditional 
damping factor 5 [6] by c2 = 1/(1- v2) while the 
decay-rate parameter p is related to the traditional 
variables of loop frequency U, [6] and 5 by p = (U,. 

These results for a second-order loop suggest 
a systematic method for parameterizing the roots 
of higher order loops. Since the loop constants 
are real, all complex roots of higher order loops 
occur in conjugate pairs. Thus, the N roots of an 
Nth-order loop can be divided into pairs, with each 
pair parameterized according to (22). With such 
parameterization, appropriate selection of /3 and q2 
for a given pair will allow those two roots to be placed 
at any allowed locations in the s-plane. Loops of odd 
order will have a last unpaired real root that will be 
represented by a decay-rate parameter /3, in analogy 
with a first-order loop. 

of an Nth-order loop can be parameterized for 
even-order loops as 

two real roots: overdamped 

two real, equal roots: critically damped 

coinplex conjugate pair: underdamped/oscillatory. 

Based on the above considerations, the N roots 

{ s1, s2; $3, s4; . . - ; s N - l ,  S N }  

The pi, q? parameters retain the same meaning for 
each root pair as the corresponding parameters for 
a second-order loop. However, it is emphasized that 
the second-order-loop relations of ,’3 and q2 to loop 
constants do not persist for higher order loops. As 
shown in the next subsection, different relations for 
connecting loop constants and the new parameters 
must be used for each loop order. 
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TABLE I1 
Loop-Filter Constants in CU Approximation 

Id* order 

z “ ~  order 

K 1 =  ~ B L T A  
1 +ai 

Controlled-root: 

Traditional: 

ltrd order 

K I  = ~ B L T ~  

Controlled-root: 

Traditional: 

4‘h order 

U4 = 4J k Traditional: as = 3 

We can choose one root factor, PI,  as the reference 
decuy-rate parameter, and form new parameters A; 
which indicate magnitude relative to the first: 

pi = A i P 1  for i 2 2. (25) 

The root parameterization is now given by 

{ sl,sZ;s39S4;s57s6;. ..} 

= {-p1(1 rt71);-P1X~(lf9z)1-P1X3(1 &73);...}. 

(26) 
The goal here is to create parameters which dictate 
the relative placement of the roots once BL has been 
specified. The parameter P I ,  which must be a positive 
number for loop stability, is made a dependent variable 
and solved for below as a function of BL. The N 
independent selectable) parameters for the loop are 
BL, A;, and 7; as defined above. 

The Xis, which we will refer to as the relative 
decay-rate parameters, control the relative magnitudes 
of different root pairs. Furthermore, we will always 
choose A i  to be positive to give exponentially decaying 
solutions to (9), since ,dl will be a positive real value. 

Some interesting values of As and 7s are: all A; = 1 
(all real parts of roots equal); all 7,” = 0, A; = 1 (all 
roots real and equal (supercritically damped)); and all 
$ = -1, A; = 1 (“standard” underdamped response). 
“Standard” underdamped response for a given root 
pair corresponds to the response of a 2nd-order 
loop with 5 = 0.707 (or r = 2, since r = 4c2 [6]). For 
supercritical damping, the response of each root pair 

1 

corresponds to the response of a critically damped 
2nd-order loop (c2 = 1 or r = 4). 

roots can be easily extended to loops of arbitrary order 
and can provide direct physical meaning and great 
flexibility in placing the roots in the s-plane. The next 
step is to determine the loop constants as a function of 
the new independent parameters. 

Thus, this pairwise approach to parameterizing the 

F. Loop Constants as a Function of the New 
Independent Loop Parameters 

To begin the process of parameterizing the loop 
constants, define the higher order C1J loop constants 
in terms of IC I :  

I C ~  = ( u ; K ~  for i = 2, ..., N .  (27) 

No loss of generality is suffered at this step since N - 1 
new parameters a; replace the N - 1 ICS. Note that this 
definition makes the QS dimensionless. As shown in 
n b l e  I for each loop order, when (27) is substituted 
for the ns in the expression for loop bandwidth, 
one obtains BL as a function of I C ~  and the as. This 
equation can be used to obtain the DU loop constant 
KI = K I T  in terms of  BL and the as, as shown in the 
first line of equations for each loop order in Bble  
11. Based on this expression for K1 and ( 5 )  and (27), 

STEPHENS & THOMAS: CONTROLLED-ROOT FORMULATION FOR DIGITAL PHASE-LOCKED LOOPS 83 



TABLE 111 
Loop-Filter Constants for m i c a 1  Implementations in CU Approximation 

Supercritically damped: $ = 0, X i  = 1, for all roots 

1“ Order 4 BLT 

Standard underdamped: 7; = -1, X i  = 1, for all mots 

the higher order loop constants can be expressed as a 
function of BL and the as, as suggested in the first line 
of equations for each loop order in lhble 11. 

in terms of the new independent parameters, BL, 
X i ,  and 7;”. The reference decay-rate parameter p1 
can be expressed as a function of BL, A;, and $ by 
substituting in (17) the root expressions in (26) and 
solving for PI: 

higher order K s  on the basis of the results for those 
quantities. 

Since the transient response of a CU loop is 

homogeneous equation, knowledge of root locations 
provides a basis for predicting such transient behavior 
and settling time. (“Transient response” in this analysis 
refers to the transient response predicted for the 
“linear-phase-extractor” model and therefore applies 

The variables . ., Q N ,  can now be parameterized characteriz,& by the solution (see (14)) to the 

where XI = K1/T is given in terms of the QS in Table 
11. Note that the sum over roots counts a X i  parameter 
twice lor a root pair, once for a simple root. The QS 

are now obtained by substituting (26), (27) and (28) 
in (17)-(20). Results for the as are given for loops of 
order 1 to 4 in the second line of equations for each 
loop order in Thble 11. To tie in with past formulations, 
the as are also given in terms of traditional parameters 
in the third line in l3ble 11. 

Thus, if the independent parameters of BL, Xi,  
and r$ have been selected, the loop constants can be 
obtained as summarized in n b l e  I1 by first computing 
the as on the basis of X i  and #, then computing K1 on 
the basis of BLT and the as, and finally computing the 

when tracking error is sufficiently small.) Because 
the rf- and A, values, along with the loop bandwidth, 
completely specify the roots by location in the complex 
plane, loop transient response is directly selected at the 
outset when the new loop parameters are chosen. For 
example, the decay-rate parameter for each root, /J IAl ,  
can be computed on the basis of (28) by substituting 
the appropriate expression for K I  = KI/T from Table 
11. For loops of first to fourth order, Table 111 presents 
loop constants for two likely implementations: I )  
standard underdamping, where all roots have the 
same decay rate (all A, = 1) and all 7: = -1, and 2) 
supercritical damping, where all roots have the same 
decay rate and are critically damped (all r(! = 0). For 
comparison, Table I11 also presents the corresponding 
traditional parameters. 
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IV. LOOPS WITH DISCRETE UPDATES 

A. Closed-Loop Equation 

A loop with phase and phase-rate feedback and 
immediate updates is analyzed in detail while only 
results are presented for other loop implementations. 
For loops with phase and phase-rate feedback, ( l ) ,  
(Z), and (4) can be combined to relate model phase 
to input signal phase: 

n n i  

A$,+, + K , $ n  + ~2zD;i + ~3xx$, 
i = l  i = l  j=1 

n n i  

n i i  

i = l  j = 1  k = l  

where the immediate-update implementation (n, = 0) 
has been assumed and where the difference operator A 
is defined by 

Axn ~n - ~ " - 1 .  (30) 

(An equation analogous to (29) is obtained for a 
rate-only loop by combining (l), (3), and (4).) To 
convert (29) to a difference equation, apply the A 
operator ( N  - 1) times: 

AN$,,+l + K1AN-'$, + K2AN--2qJ, + . . .  + K N &  

= KIAN-'$,  + K2ANP2$" + ' . .  + KN$,, (31) 

where N is the loop order. In analogy with (9), 
solution of this difference equation gives the behavior 
of model phase q?~ in response to signal phase $, when 
@ -- @ is sufficiently small. 

B. Transfer Function 

To find the frequency response of the loop, take the 
z-transform of both sides of (31) to obtain 

z(1- z - 1 ) N & ) . ( z )  + (1 - Z-')N-'K1Qz(z) + " '  + K N & ( Z )  

= (1- z - y l K l @ z ( z )  + ."  + K N % ( Z )  (32) 

where a, and 8, are the z-transforms of $n and $,,, 
respectively. To reach this expression, we have used the 
relations 

2{a .vxn}  = (1 - Z - ' ) N 2 { X n }  (33) 

~ { X n + l )  = Z Z { X n )  (34) 
and 

where 2{ } represents a z-transform. Since the 
closed-loop transfer function H, ( z )  is defined by 

6, (2) = K (z)% ( 2 )  (35) 
we find that (32) yields the expression 

where 

D ( z )  E (Z - l )N  + ( Z  - l)N-'K1 + Z(Z - 1)N-2K2 

+ Z ~ ( Z  - 1)N-3K3 + . . . + z N - l  K h .  (37) 
The frequency response of the loop is obtained by 
substituting 

(38) = e i ? ~ f T  

in (36) where f is the frequency in Hertz. Plots of the 
transfer function for possible loop implementations are 
given below. 

C. Loop Noise Bandwidth 

In analogy with (13), the single-sided noise 
bandwidth for the closed DU loop is defined by 

By using the transformation of (38), one can rewrite 
this integral as a contour integral in the form 

27r ' f  i 
2B,5T = - H,(z)H,(z-')z-' d z  (40) 

where the closed path is along the unit circle. (Since 
the integral is along the unit circle, the conjugate 
z* can be replaced by z-I.)  This integral can be 
computed on the basis of residues within the unit 
circle to obtain BLT as a function of the poles of the 
integrand. For simple poles, the integral is given by 

~ B I ~ T  = E{(. - Z j ) ~ = ( Z ) H z ( z - . ' ) Z - ' } ~ ~ z ,  (41) 
I 

where the sum is over all poles { z ; }  of the integrand 
within the unit circle. (For cases with poles of order 
greater than first, the residue evaluation must be 
appropriately modified.) 

the polynomial D(z )  in the denominator of H,(z)  and 
therefore satisfy the equation 

As seen in (36), the poles of H,(z) are the roots of 

D ( z )  = (Z - l )N + (2 - 1)""K1 + Z(Z - 1)N-2K2 

+ z2(2 - 1)N-3K3 + . . . + z N - '  Kfi, = 0. (42) 

Let the N roots of this polynomial be z, so that D(z )  
can also be written as 

D ( z )  = (2 - Zl)(Z - ZZ)(Z - 2 3 )  ' .  . ( Z  - ZfV). (43) 
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Since the N roots of D(z)  must all lie within the unit 
circle if the loop is to be stable (see next subsection), 
all poles of H,(z-’) will lie outside the unit circle 
and will not contribute to the contour integral. 
(Note that there is no pole at z = 0 due to z-l, since 
limz,oHz(z-l) = Klz.) Thus the contour integral can 
be evaluated in a straightforward though algebraically 
tedious fashion on the basis of the N poles of H z ( z )  
through use of (36), (41), and (43). The resulting 
expressions for BLT as a function of the roots zi are 
lengthy and relatively uninformative, particularly for 
the higher-order loops, and are not presented here. 

D. Solution to Homogeneous Equation 

In analogy with Section IIIC, solutions to the 
homogeneous form of (31) (i.e., q5,, = 0) provide 
information as to the transient behavior and stability of 
the DU loop, given the linear phase-extractor model. 
The nondegenerate solution to the homogeneous 
equation is given by 

N 

in = C a ; z r  (44) 
i=l 

where the N amplitudes ai are to be determined from 
initial conditions and where the N complex numbers 
z; are again the roots of the polynomial D(z )  in (42). 
To see that the roots of (42) provid? solutions to the 
homogeneous equation, substitute $,, = z” in the 
left-hand side of (31), with the right-hand side set 
equal to zero, and reduce to the form of (42). Thus, 
the roots from the homogeneous equation are also the 
poles of the transfer function. (A degenerate case can 
again be approximated by a nondegenerate solution 
with infinitesimally separated roots.) In order for the 
loop to be stable, the loop constants Ki must be set 
to values for which all the roots to fall within the unit 
circle. With a modulus less than 1, a root leads to a 
root-specific transient response that decays. 

E. Loop Constants as Function of Loop Roots 

To obtain the relationship between the roots and 
the loop constants, first collect terms according to the 
power of z in (37) and (43). When the coefficients of 
like powers of z are equated, one obtains N equations 
relating roots and loop constants: 

$ z i =  ( y )  - K l - K 2 - . . - K N  (45) 

(48) 

(49) 
i 

where (z) is the binomial coefficient. These N 
equations can be used to solve for each of the .Y loop 
constants ICn in terms of the N roots, 2,. Thus, if the 
roots are known, the loop constants can be calculated. 

When the contour integral for BLT is evaluated as 
a function of roots for a given loop order, as described 
in Section IVC, it turns out that the result can be 
reduced to a form that contains only the functions of 
zi found on the left-hand sides of (45)-(49). When 
this form is reached, BLT can then be expressed as 
a function of only the loop constants. As examples, 
results are presented in n b l e  IV for loops of order 
one to four with phase and phase-rate feedback and 
zero computation delay. 

F. Parameterization of Loop Roots 

Parameterization of loop roots in the case of 
discrete updates parallels Subsection IIIE for the 
CU limit. L,oop noise bandwidth BL and the same 
root-location parameters are adopted as independent 
loop parameters. The roots are parameterized in the 
form 

where Xi  and qi are the N -- 1 independent parameters 
specified in Section HIE, with A1 G 1. These 
parameters and “normalized” loop bandwidth BLT will 
comprise the N independent loop parameters needed 
to completely specify the loop roots. As in the CU 
formulation, the quantity p1 will be made a dependent 
variable. 

G. Loop Constants as a Function of the New 
Independent Loop Parameters 

In (50), the reference decay-rate parameter 
PI, which is, to be represented in the normalized, 
dimensionless form PIT in the DIJ case, must be 
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TABLE IV 
Loop Bandwidth From Loop Constants for DPLLs With Phasephase-Rate Feedback and No Computation Delay 

B ~ T  = + 2 2 - K  

determined as a function of these N independent 
parameters. In the CU limit, determination of 
in terms of BL, Ai and $, could be carried out in 
closed form, as discussed in Section IIIE For DU 
loops, however, the complexity of the equations 
makes a closed-form solution in the general case 
impractical. Thus, a numerical solution has been 
carried out by first selecting a value for PIT and the 
N -- 1 independent parameters, A; and $, and then 
computing numerical values for the N roots zi through 
use of (50). The resulting z; values can be used to 
compute the normalized loop bandwidth BLT,  as 
shown in Section IVC, and the loop constants, as 
shown in Section IVE. Repeating the process in this 
fashion on the basis of the same A; and 77,? values, one 
can vary the parameter PIT numerically to obtain BLT 
and the loop constants as a function of PIT. 

In general, BLT increases as PIT increases 
from zero but can go no higher than a loop-specific 
maximum value. Plots of BLT versus PIT are shown 
in Fig. 2 for two supercritically damped third-order 
loops with phase and phase-rate feedback, one 
with a computation delay of zero, the other with a 
computation delay equal to one update interval. In 
the zero-computation delay case, BLT can get no 
higher than 9.5, which corresponds to a PIT value of 
+m. In the other case, BLT reaches a peak value of 
approximately 0.3 at PIT = -ln(3/4). 

For a given allowed value of BLT,  therefore, one 
can find the corresponding PIT. Given Ai and q? and 
this value of PIT, one can compute the loop roots 
on the basis of (50). These loop roots can then be 
inserted in (45)-(49) and the N loop constants can 
be computed. Thus, loop constants can be determined 
for given Ai  and 7' as a function of BLT.  Results are 
presented in Tmbles V-VI11 for loops of order 

i o  r 

0 0.2 0.4 0.6 0.8 1.0 

MAXIMUM 

ALLOWED ELT- 7? 

ELT o'20 

(DEPENDENT ROOT PASSES 
THROW THE UNIT CRCLE 
RESPONSE BECOMES WSTABLEl 

0.2 0.4 0.6 0.8 1.0 

& h T  

(4 
Fig. 2. Normalized loop bandwidth BLT versus decay-rate 
parameter PIT for third-order DPLL with phase/phase-rate 

feedback and supercritical damping. 

one to four, given phase and phase-rate feedback or 
rate-only feedback, supercritical damping or standard 
underdamping, and a computation delay of zero or one 
update interval. For most loops in Thbles V-VIII, loop 
constants are presented over the full range of allowed 
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TABLE V 
Loop-Filter Constants for DPLL With Phasephase-Rate Feedback and Supercritically Damped Response 

No computation delay 

BLT 
0.001 
0.005 
0.01 
0.02 
0.03 

0.05 
0.075 
0.1 
0.15 
0.2 

0.25 
0.3 
0.35 
0.4 
0.45 

0.5 
0.6 
0.7 
0.8 
0.9 

1. 
1.2 
1.4 
1.6 
1.8 

2. 
2.5 
3. 
3.5 
4. 

4.5 
5. 

l o t  order 
Ki 
0.003992 
0.01980 
0.03922 
0.07692 
0.1132 

0,1818 
0.2609 
0.3333 
0.4615 
0.5714 

0.6667 
0.7500 
0.8235 
0.8889 
0.9474 

1 .o 

2nd order 
Kl Ka 
0.003193 2 .56346  
0.01582 6.30%-05 
0.03130 0.0002488 
0.06125 0.0009877 
0.08993 0.002118 

0.1438 0.005576 
0.2051 0.01176 

0.3572 0.03931 
0.4379 0.06264 

0.5061 0.08835 
0.5643 0.1155 
0.6142 0.1436 

0.0952 0.2006 

0.7282 0.2291 
0.7828 0.2851 
0.8257 0.3394 
0.8599 0.3915 
0.8874 0.4414 

0.2607 o.oim5 

o . w s  0.1720 

0.9096 0.4890 
0.9425 0.5779 
0.9645 0.6588 
0.9793 0.7328 
0.9819 0.8008 

0.9950 0.8631 
1.0 1.0 

3rd order 
Ki Ka Ks 
0.002903 2.812-06 9.084e-10 
0.01438 6.94ltO5 1.118-07 
0.02845 0.0002733 8.778607 
0.05567 0.001060 6 .76548  
0.08174 0.002312 2.220e-05 

0.1307 0.00606 9 .48545  
0.1864 0.01267 0.0002936 
0.2369 0.02101 0.M)OBrloEi 
0.3248 0.04147 0.001847 
0.3983 0.06623 0.00378 

0.4606 0.09089 0.008432 
0.5139 0.1175 0.00976 
0.5598 0.1444 0.01371 
0.5998 0.1712 0.01821 
0.6348 0.1977 0.02321 

0.6657 0.2235 0.02864 
0.7173 0.2732 0.04059 
0.7585 0.9196 0.06371 
0.7920 0.3629 0.06769 
0.8198 0.4030 0.0823 

0.8420 0.4402 0.09756 
0.8782 0.5065 0.1283 
0.9042 0.5638 0.1597 
0.9237 0.6130 0.191 
0.9386 0.6569 0.222 

0.9502 0.6935 0.2626 
0.9697 0.7689 0.3258 
0.9811 0.8248 0.3947 
0.9881 0.8672 0.4591 
0.9925 0.8997 0.5194 

0.9963 0.9248 0.576 
0.9971 0.9444 0.6291 

Computation delay = 1 update interval 

S l d  order - lstordu 2ndorder 
BLT K1 KI Ka Ki Ki? Ks 
0.001 0.003970 0.003181 2 .53846  0.002892 2 .79646  9.Olb;alO 
0.005 0.01942 0.01554 6.1360-05 0.01414 6 . 7 4 9 4 5  1.07747 
0.01 0.03779 0,03023 0.0002357 0.02752 0.0002588 8.166607 
0.02 0.07177 0.05754 0.0008737 0.05224 0.0009552 6.897608 
0.03 0.1027 0.08185 0.001832 0.07461 0.001993 1.80945 

0.05 0.1571 0,1245 0.004476 0.1136 0.00162 7.032605 
0.075 0.2148 0.1686 0.008742 0.1538 0.009282 O.OOO1955 
0.1 0.2046 0.01371 0.1869 0.01433 0.0003895 
0.15 0.2594 0.02487 0.2377 0.02515 0.0009724 
0.2 0.2740 0.03595 0.001784 

0.25 
0.3 
0.35 

0.3000 0.04617 0.002793 

4th ordm 

Xi Ka Ka x4 
0.002747 2.839a06 1.299~-09 2.234~~13 
0.01361 8.988606 1.597607 1.369&10 
0.02692 0.000275 1 . 2 5 1 ~ 4 6  2.138-09 
0.05269 0.001065 9 . 6 1 7 4 6  3.265e-OR 
o .oma 0.00232i 0.0000312 i.57ee-07 

0.1237 0.008050 0.0001337 l.ll3e-08 
0.1766 0.01265 0.0004113 5.055608 
0.2245 0.02094 0.0008915 1.439e-05 
0.3080 0.04113 0.002540 5.978+05 
0.3780 0.06443 0.005139 0.0001670 

0.4375 0.08942 0.008652 0.0003222 
0.4885 0.1152 0.01300 0.0005871 
0.5327 0.1411 0.01808 0.0008998 
0.5712 0.1668 0.02380 0.001325 
0.8050 0.1920 0.03006 0.001844 

0.6349 0.2166 0.03679 0.002469 
0.6862 0.2634 0.06133 0.003967 
0.7268 0.3069 0.06692 0.005852 
0.7590 0.3471 0.08318 0.008026 
0.7863 0.3842 0.09983 0.01052 

0.8097 0.4184 0.1167 0.01328 
0.8462 0.4790 0.1503 0.01951 
0.8734 0.5308 0.1832 0.02850 
0.8942 0.5754 0.2151 0.03410 
0.9106 0.6141 0.2457 0.04216 

0.9236 0.6479 0.2749 0.05058 
0.9466 0.7158 0.3419 0.07270 
0.9612 0.7667 0.4011 0.09566 
0.9710 0.8058 0.4533 0.1189 
0 . 9 m  0 . 8 3 ~  0.4998 0.1422 

0.9827 0.8613 0.5409 0.1652 
0.9864 0.8814 0.5779 0.1879 

4th ordu 
Kl 
0.002737 
0.01339 
0.02608 
0.04951 
0.07076 

0.1078 
0.1M2 
0.1778 
0.2205 
0.2618 

0.2878 
0.3071 
0.3211 

P 

Ka K3 K4 
2 . 8 1 0 6  1.288609 2.211b13 
6.79Se-05 1.537c-07 1.3Otk-10 
0.0002804 1.1630-06 1.952a09 
O.OOO9599 8 . S W  2.745~-08 
0.002000 2.5510-05 1.231607 

0.004819 9.83-05 7.611-07 
0.009237 0.0002700 3.007~-OB 
0.01420 0.0006309 7.-08 
0.02467 0.001289 2.61oC-05 
0.03495 0.002293 5.90&-05 

0.04452 0.003473 0.0001076 
0.05316 0.004765 0.0001722 
0.08074 0.008129 0.0002543 

values of BLT, to the extent allowed by computational 
quantization of BLT. In Bbles V and VI, however, 
BLT has been extended only up to 5.0 for third- and 

(43). Resuilts are plotted in Figs. 3 and 4 for two loop 
configurations. 

fourth-order loops, even though much larger values are 
feasible (e.g., up to BLT = 9.5 for third order and 24.5 
for fourth order in Bble  V). 

H. Example of Straying Roots at Large BL,T Values in 
the CU Approximation 

Once the loop roots are known, the transfer 
function can be computed on the basis of (36) and 

As BLT increases in the CU approximation for 
loop constants (e.g., Tmble III), the paths of the 
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TABLE VI 
Lmop-Filter Constants for DPLL With PhasePhase-Rate Feedback and Standard-Underdamped Response 

No computation delay 

BLT 
0.001 
0.005 
0.01 
0.02 
0.03 

0.05 
0.075 
0.1 
0.15 
0.2 

0.25 
0.3 
0.35 
0.4 
0.45 

0.5 
0.0 
0.7 
0.8 
0.9 

1. 
1.2 
1.4 
1.0 
1.8 

2. 
2.5 
3. 
3.5 
4. 

4.5 
5. 

1st order 
Ki 
0.003992 
0.01980 
0.03922 
0.07692 
0.1132 

0.1818 
0.2609 
0.3333 
0.4015 
0.5714 

0.8687 
0.76W 
0.8235 
0.8889 
0.9474 

1.0 

h d  order 
Ki Ka 
0.002861 3.545-08 
0.01319 8.752-05 
0.02609 0.0005448 
0.05106 0.001398 
0.07499 0.002922 

0.1199 0.007058 
0.1713 0.01607 
0.2179 0.02670 
0.2991 0.05288 
0.3675 0.08345 

0.4258 0.1188 
0.4760 0.1511 
0.5198 0.1862 
0.5677 0.2213 
0.5914 0.2501 

0.0214 0.2902 
0.6721 0.3560 
0.7134 0.4181 
0.7475 0.4703 
0.7702 0.5308 

0.8007 0.5813 
0.8399 0.0727 
0.8099 0.7524 
0.8930 0.8223 
0.9127 0.8899 

0.9280 0.9385 
0.9587 1.051 
0.9827 1.134 

Srd order 
Kl K Z  KJ 
0.002803 3.018608 1 .31149  
0.01290 7.437b05 1.011e-07 
0.02652 0.0002920 1.204e-06 
0.04996 0.001133 9 .72046  
0.07338 0.002469 3.160e-05 

0.1174 0.006445 0.0001355 
0.1077 0.01345 O.ooo1177 
0.2133 0.02226 0.0009073 
0.2929 0.04370 0.002596 
0.3599 0.06842 0.006269 

0.4171 0.09491 o.oo8mi 
0.4662 0.1222 0.01341 
0.6068 0.1496 0.01871 
0.6463 0.1768 0.02470 
0.5793 0.2034 0.03129 

0.6085 0.2294 0.03838 
0.6580 0.2788 0.05381 
0.6983 0.3247 0.07047 
0.7315 0.3671 0.08796 
0.7593 0.4081 0.1080 

0.7829 0.4421 0.1243 
0.8205 0.5059 0.1012 
0.8490 0.5003 0.1979 
0.8713 0.6072 0.2337 
0.8881 0.6478 0.2684 

0.~035 0.6832 0.3019 
0.9297 0.7544 0.3802 
0.9470 0.8070 0.4610 
0.9592 0.8485 0.5151 
0.9880 0.8805 0.5735 

0.9747 0.9081 0.0209 
0.9798 0.9207 0.0760 

4th order 

KI Ka K S  K4 
0.002307 2 . 8 0 4 4 6  1.601~-09 4.923b13 
0.01173 0.907a05 2.037~-07 3.008e.10 
0.02321 0.0002716 1.5940-06 4.093-09 
0.04545 0.001051 1.222.-05 7.147t-08 
0.06679 O.OOe289 3.9550-05 3 .44747  

0.1070 0.005966 0.0001087 2.420606 
0.1690 0.01243 0.0006159 1.093b05 
0.1949 0.02064 0.001112 3.09&-05 
0.2683 0.04022 0.003136 0.0001973 
0.3305 0.06282 0.006285 0.0003313 

0.3838 0.08897 0.01049 0.0008738 

0.4701 0.1367 0.02160 0.001861 
0.5066 0.1613 0.02817 0.002705 

0.4299 0.1118 o.oise2 o . o o i m  

0.5370 0.1853 0.03534 o.oos7ga 

0.5650 0.2087 0.04298 0.00196 
0.0128 0.2532 0.05920 0.007884 
0.0521 0.2944 0.07632 0.01146 

0.7124 0.3675 0.1116 0.02021 

0.7360 0.3997 0.1293 0.02527 
0.7743 0.4509 0.1039 0.03644 
0.8038 0.5058 0.1971 0.04869 
0.8272 0.5479 0.2280 0.06171 
0.8461 0.5840 0.2582 0.07525 

0.8018 0.0167 0.2860 0.08915 
0.8910 0.0817 0.3482 0.1245 

0.9256 0.7096 0.4470 0.1945 
0.9368 0.8001 0.4807 0.2281 

0.9452 0.8250 0.5213 0.2805 
0.9520 0.8405 0.6519 0.2917 

0 . ~ 8  0.3325 0.0939 o.oissa 

0.9111 0.7310 0.4013 0.1599 

Computation delay = 1 update interval 

BLT Ki Ki Ka 4 Xa KS Ki Ka KS K4 

Istorder h d o r d n  3rd order 4th order 

0.001 0.003978 0.00205 3.51b-06 0.002594 2.997e-08 1.2998-09 0.002368 2.784e-08 1.045aoB 4.8598.13 
0.005 0.01942 0.01299 8.4117605 0.01270 7.2296.05 1.MQe-07 0.01165 6.717605 1.959a07 2.802h10 
0.01 0.03779 0.02533 0.0003248 0.02474 0.0002709 1.1700-08 0.02252 0.0002573 1.47lk-06 4 .25949  
0.02 0.07177 0.04827 0.001194 0.04709 0.001018 8.991-OB 0.04293 0.0009475 1.05da05 5.935t-08 
0.03 0.1027 0.06919 0.002479 0.06739 0.002121 2.551e-05 0.06154 0.001971 3.2lOd-05 2.63&-07 

0.05 0.1571 0.1060 0.005937 0.1030 O.00QOM 9.76sC.05 0.08425 0.004792 0.0001220 1.594e-00 
0.075 0.2148 0.1448 0.01130 0.1401 0.009726 0.0002657 0.1285 0.009020 0.0003292 0.12Oe-08 

0.15 0.2300 0.02963 0.2193 0.02572 0.001230 0.2021 0.02372 0.001494 4.88od-05 
0.2 0.2713 0.04155 0.2554 0.03830 0.002107 0.2380 0.03335 0.002579 0.0001037 

0.25 0.3071 0.05222 0.2833 0.04610 0.003232 0.2022 0.04227 0.003795 0.0001781 
0.3 0.3055 0.06518 0.004373 0.2832 0.05037 0.005076 0.0002885 
0.35 0.3242 0.08338 0.005530 0.3002 0.05786 0.006374 0.0003710 
0.4 0.3143 0.06420 0.007064 0.0004821 
0.45 0.3203 0.07008 0.008927 0.0005986 
0.5 0.3388 0.07554 0.01010 0.0007107 

0.1 0.1775 0.01726 0.1709 0.0148~ 0.000~18 0.1571 0.01379 o.oo(383m 1.5as~as 

loop roots can stray from their original intended 
courses and true loop noise bandwidth can exceed 
the BL “parameter” value used to compute the loop 
constants. This deviation is illustrated in both the 
sT-plane and z-plane in Fig. 5 for a second-order DU 
loop with phase and phase-rate feedback, standard 
underdamping, and no computation delay. The thick 

straight lines, which are based on the exact DU 
solution presented in preceding subsections, show the 
paths taken by standard-underdamped roots as (true) 
BLT increases from 0 to 1.4. The thin curved Lines, 
which are produced by the CU approximation, follow 
the DU lines until about BLT = 0.1 and then curve 
toward the real axis. (Note that the CU-approximation 
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TABLE VI1 
Loop-Filter Constant for DPLL With Rate-Only Feedback and Supercritically Damped Response 

No computation delay 
1Llt order 

ELT 
0.005 0.01976 
0.010 0.03918 
0.015 0.05822 
0.020 0.07689 
0.026 0.09620 

0.030 0.1132 
0.035 0.1908 
0.040 0.1481 
0.045 0.1651 
0.050 0.1818 

0.060 0.2143 
0.070 0.2456 
0,080 0.2758 
0.090 0.3051 
0.100 0.3333 

0.160 
0.200 
0.250 
0.300 
0.350 

0.400 

2nd order 
Ki K3 
0.01675 6.275605 
0.03109 2.4760-04 
0.04602 5.486e-04 
0.08054 9.607604 
0.07466 0.001479 

0.08840 0.002087 
0.1018 0.002812 
0.1148 0.003619 
0.1274 0.004513 
0.1397 0.005491 

0.1634 0.007683 
0.1858 0.01016 
0.2070 0.01291 
0.2271 0.01590 
0.2461 0.01911 

0.3268 0.03784 
0.3804 0.05982 

brd order 
K,. Kz K3 
0.01431 8.89Oe-05 1.109607 
0.02823 2.707604 8.696e-07 
0.04175 5.978a-04 2.874606 
0.05488 0.001043 6.6686-08 
0.06763 0.001599 1.275605 

0.08009 0.002269 2.1570-05 
0.09207 0.003018 3.3640-06 
0.1038 0.009868 4.902~-05 
0.1152 0.004808 6.89-05 
0.1262 0.005826 9.18&-05 

0.1474 0.008089 1.524604 
0.1675 0.01062 2.325604 
0.1865 0.01339 3.33Bdu 
0.2044 0.01636 4 .569~44  
0.2214 0.01952 6.033604 

0.2938 0.03718 0.W1697 
0.3489 0.05646 0.003398 
0.3901 0.07588 0.006880 
0.4208 0.09441 0.008524 

4th order 
Ki Ka K3 K4 
0.01353 6 .927~05  1.67&07 1.351e-10 
0.02669 2 .718~04  1.235~-06 2.109c-09 
0.09947 5.992e-04 4 . 0 6 9 4 6  1.039c-08 
0.06187 0.001044 9 .411~06  3.194148 
0.06392 0.001698 1.794c05 7.585~-08 

0.07562 0.002254 3.026606 1.530a-07 
0.08688 0.009008 4 . 6 8 8 4 6  2.7584-07 
0.09805 0.003848 6 . 8 3 1 ~ 0 5  4.579e-07 

0.1192 0.006778 1 .27244  1.059e-08 

0.1392 0.008000 2.097604 2.083&6 
0.1581 0.01047 3.179-e-04 3.863408 
0.1760 0.01317 4 .53344  5.93-06 
0.1929 0.01605 6 . 1 7 0 4 4  9.039606 
0.2089 0.01909 8 .095~04  1.311e-05 

0.2773 0.03591 0.002207 5.227a06 
0.3298 0.05393 O.Oo(2M) 1.323604 
0.3703 0.07179 0.008918 2.628,M 
0.4014 0.08870 0.009W1 4.496e-M 
0.4250 0.1041 0.01337 8 .97044  

0.4422 0.1177 0.01696 0.001013 

0 . 1 0 1 ~  0.004774 9.4mc-05 7.139~-07 

Computation delay = 1 update interval 

1rt mda m d  order 8rd order 4th order 
BLT Ki Ki Kz Ki Kz KS Ki Ka KS K4 
0.005 0.01939 0.01547 6 .10345  0.01400 6.698~-05 1.067607 0.01331 6.738606 1 .62147  1.2We.10 
0.010 0.03773 0.03003 2.344044 0.02129 2.562a-04 8.084t.07 0.02883 2.573-04 1.147~-06 1.92rle-09 
0.015 0.05510 0.04372 5 . 0 6 4 4  0.03974 6.516M4 2 .58248  0.03762 5 . 5 3 0 4 4  3.85le-06 9.08Cb09 
0.020 0.07167 0.06663 8.656604 0.05147 9.388M4 5.800606 0.04873 93-04 8.171046 2.679608 
0.025 0.08724 0.06880 0.001302 0.06253 0.001406 1.07545 0.06922 0.001405 1 . 5 0 9 d 5  6 .11848  

0.030 0.1022 0.08031 0.001806 0.07299 0.001942 1.76645 0.08912 0.001939 2.468605 1.18847 
0.035 0.1164 0.09120 0.002371 0.08287 0.002539 2.668605 0.07860 0.002530 3 .71545  2.06607 
0.040 0.1300 0.1015 O.MnSs0 0.09224 0.003188 3.792e-05 0.08738 0.003172 5 .28245  3.311e-07 
0.015 0.1431 0.1113 0.003857 0.1011 0.003882 5.14sC-06 0.09580 0.003857 7.11Qe-05 4.991+07 
0.050 0.1556 0.1205 0.004367 0.1096 0.004614 6 .74545  0.1038 0.004578 9.2890-05 7.16&-07 

0.080 0.1790 0.1377 o.oos89a o.iasi o."i i.og~e-04 0.1186 
0.070 0.1591 0.007563 0.1592 0.007834 1.655604 0.1920 
0.080 0.1671 0.008307 0.1520 0.009561 2.13&-04 0.1442 
0.090 0.1797 0.01114 0.1636 0.01133 2.81744 0.1553 
0.100 0.1911 0.01305 0.1741 0.01313 3.685604 0.1664 

0.150 0.2142 0.02208 8 .65544  0.2044 
0.200 0.2296 

0.008108 
0.007725 
0.009400 
0.01 111 
0.01294 

0.02130 
0.02a89 

1.457604 1 .32606  
2.108d)4 2.20046 
2 .87744  3.378& 
3.75744 4.89046 
4 .74144  6 .761~06  

0.001094 2.205605 
0.001880 4.8Me-05 

curves are marked by both true BLT values and 
parameter BLT values. As explained in [3], true BLT is 
the actual normalized noise bandwidth for a DU loop, 
while parameter BLT is the value used to compute 
the loop constants in Table 111.) Where the curves 
separate, the CU approximation starts to diverge 
from standard underdamping, and loop damping 
changes. The inset plot illustrates this divergence in 
terms of the corresponding damping parameter 7'. 
For the CU approximation, q2 starts at the intended 
underdamped value of -1 at BLT = 0, increases to a 
critically damped value of 0 at true BLT = 0.8, and 

then approaches f l  at true BLT % 1.2. Thus, l o q  
response at high BLT values does not match the 
original intended response. In contrast, as indicated 
by the thick lines, the DU exact solution maintains 
standard underdamping @e., 7; = -1) for allowed 
values of BLT.  

V. TRANSIENT-FREE ACQUISITION WITH DPLLS 

If the si,gnal phase and its time derivatives are 
accurately known at start-up, it is possible to initialize 
the loop sunns and loop phase so that the loop starts 
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TABLE VI11 
hop-Filter Constants for DPLL With Rate-Only Feedback and Standard-Underdamped Response 

No computation delay 

BL T 
0.005 
0.010 
0.015 
0.020 
0.025 

0.030 
0.035 
0.040 
0.045 
0.050 

0.060 
0.070 
0.080 
0.090 
0.100 

0.150 
0.200 
0.250 
0.300 
0.350 

0.400 
0.450 
0.500 
0.800 

18t order 
K1 
0.01970 
0.03918 
0.05822 
0.07689 
0.09520 

0.1132 
0.1308 
0.1481 
0.1651 
0.1818 

0.2143 
0.2458 
0.2758 
0.3051 
0.3333 

2nd order 
KI Ka 
0.01312 8.60le-05 
0.02589 3.39644 
0.03831 7.482604 
0.05039 0.001302 
0.06214 0.001992 

0.07358 0.002810 
0.08472 0.003746 
0.09566 0.004799 
0.1061 0.005944 
0.1164 0.007191 

0.1362 0.009950 
0.1551 0.01302 
0.1731 0.01037 
0.1902 0.01995 
0.2068 0.02372 

0.2788 0.04471 
0.3387 0.06740 
0.3912 0.09013 
0.4464 0.1108 

Srd orda 
K1 Ka Ks 
0.01283 7.365~-05 1.590~-07 
0.02530 2.886e-04 1.24246 
0.03742 6.358604 4.0840-06 
0.04918 0.003106 9.429608 
0.08062 0.001691. 1.79445 

0.07172 0.002383 3.02Oa05 
0.08252 0.003175 4.674a05 
0.06302 0.004060 0.8We-05 
0.1032 0.005032 9.438~-05 
0.1132 0.006085 1.262e-04 

0.1322 0.008410 2.075604 
0.1503 0.01099 3.137604 
0.1074 0.01380 4.46044 
0.1837 0.01079 6.055d4 
0.1991 0.01995 7.92444 

0.2657 0.03734 0.002135 
0.3183 0.05595 0.004103 
0.3806 0.07452 0.006583 
0.3961 0.09238 0.000451 
0.4241 0.1093 0.01259 

0.4499 0.1253 0.01584 

Computation delay = 1 update interval 

Bt T 
0.005 
0.010 
0.015 
0.020 
0.025 

0.030 
0.035 
0.040 
0.045 
0.050 

0.060 
0.070 
0.080 
0.090 
0.100 

0.150 
0.200 
0.250 
0.300 
0.350 

1.t order 
KI 
0.01939 
0.03773 
0.05610 
0.07157 
0.08724 

0.1022 
0.1164 
0.1300 
0.1431 
0.1566 

0.1790 

2nd wdar 
KI K2 
0.01292 8.403~-05 
0.02514 3.2OOe-04 
0.03669 6.85844 
0.04763 0.001162 
0.05aoi 0.001732 

0.00787 0.002383 
0.077!25 0.003101 
0.08619 0.003878 
0.09472 0.004703 
0.1029 0.005569 

0.1182 0.007397 
0.1322 0.008510 
0.1452 0.01129 
0.1573 0.01330 
0.1685 0.01531 

0.2164 0.02502 

Srd order 

Ki & KS 
0.01263 7.161e-05 1.628c-07 
0.02463 2.731604 1.15Oa06 
0.05176 5.859e-04 3.640046 
0.04635 9.942e-04 8.132e-00 
0.01637 0.001484 1.49645 

0.06587 0.002045 2.4-05 
0.07487 0.002M1 3.66Oe05 
0.08342 0.003336 5.1691s-05 
0.08154 0.004051 0.970~45 
0.09928 0.004802 9.060e-01 

0.1137 0.008391 1.4lSe-04 
0.1268 0.008066 2.032604 
0.1388 0.009795 2.757604 
0.1498 0.01158 3.58144 
0.1599 0.01335 4.4940-04 

0.2003 0.02203 0.001012 
0.2290 0.02994 0.001683 
0.2532 0.03710 0.002344 

4th orda  

K1 Ka K.3 K4 
0.01105 6.831e-05 2.0o(k-07 2.95le-10 
0.02299 2.073604 1.561t-MI 1.57249 
0.03399 5.879a04 6.117~-06 2.237e-08 
0.04468 0.001021 1.177~-05 6.827e-08 
0.05506 0.001560 2.233a05 1.610607 

0.06516 0.002195 3.747~05 3.225607 
0.07498 0.002921 5.780605 5.774+07 
0.08450 0.003731 8.382a05 9.522e-07 
0.09377 0.004019 1.1-04 1.474e-08 
0.1028 0.005578 1.54Bc-04 2.1730-06 

0.1201 0.007691 2.12644 4.218- 
0.1365 0.01003 3.7960-04 7.321a06 
0.1521 0.01256 5.36744 1.171605 
0.1869 0.01526 7.244a04 1.761d)S 
0.1809 o.oiao9 9.42~law 2 . ~ ~ 5  

0.2417 0.03350 0.002476 9.483~45 
0.2899 0.04990 0.004650 2.27- 
0.3288 0.06604 0.007307 4.273cM 
0.3606 0.08142 0.01030 6.937ccM 
0.31170 0.09580 0.01551 0.001020 

0.4093 0.1091 0.01683 0.001307 
0.4282 0.1213 0.02021 0.001815 
0.4446 0.1325 0.02559 0.002264 
0.4726 0.1523 0.03034 0.003197 

4th order 
K1 Ka K3 K4 
0.01148 6.64rk-05 1.9-07 2.808e.10 
0.02232 2.53344 1.448a-06 4.1-09 
0.03255 5.43144 4.581~06 1.94046 
0.04222 9.21044 1.01Qe05 5.668~08 
0.05137 0.01374 1.87Oa-05 1.21147 

0.06005 0.001891 3.0410-05 2.465-07 
0.08829 0.002463 4.5SoC-05 4.243e.W 
0.07012 O.DnW3l 6.409605 6.73547 
0.08358 0.00 (738 8.62145 l.ooBc-06 
0.09068 0.004428 1.llQe-04 1.431~-06 

0.1039 0.005886 1.735e-04 2.69546 
0.1160 0.007418 2.4830-04 4.22646 
0.1271 0.008996 3.36444 6.30846 
0.1372 0.OIoBo 4.398604 9.049~08 
0.1466 0.91221 5.410s-04 1.226e-05 

0.1841 0.02007 0.001195 3.063c-05 
0.2108 0.02716 0.001958 7.2QOe-05 
0.2307 0.03332 0.002754 1.177-04 
0.2461 0.03863 0.003547 1.677~04 
0.2588 0.04325 0.004319 2.185h04 

tracking in-lock, with no transients. Such information 
on signal phase could be supplied, for example, on the 
basis of FFT analysis or a priori trajectory estimates. 
This section presents a technique for transient-free 
initialization of a loop with phase and phase-rate 
feedback. A similar derivation can be carried out for 
a loop with rate-only feedback. 

Suppose that the input signal can be represented by 
the appropriate polynomial so that steady-state tracking 

can develop. In steady-state tracking, residual phase 
becomes a constant (Bn = dss = steady-state phase 
error) so that (4) becomes 

n-n, n - n ,  i 

A$n+l = K16ss + K2 6i + K3 C Caj 
i = l  i=l j = 1  

n-n, i 

+ K4 yk6k 
i = l  j = 1  &=I 
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Fig. 3. Power transfer functions for third-order DPLLs with 
phase/phase-rate feedback and no computation delay. 
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Fig. 4. Power transfer functions for third-order DPLIs with 
phase/phase-rate feedback and computation delay of one update 

interval. 

451- 
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I I 

ll 

for up to a fourth-order loop. Note that estimated 
model phase rate, $6n+lT has been replaced by 
differenced input phase. This substitution is based on 
(2) and the fact that model phase tracks input phase 

constant phase offset. Higher order differences of (51) 
become 

Using a Taylor expansion whose origin is the center of 
the nth interval (t = c,,): 

(1) ( l  - tn12 (2) 
$( t )  = $n + ( t  - rrt )$, ,  + --$n 2 exactly in steady-state tracking, except for noise and a 

(bp + ' ' ' 
( t  - t n l 3  6(3) + _- -- t n l 4  

(55) 24 
+- 

n - n ,  n - n ,  I 6 "  

i = l  i = l  j=1 
*2$n+l = K24ss  + K3 6 + K4 (52) one can show these same phase differences are related 

to input phase derivatives by 
n-n.  

I I A T T R U E B L T B I . ~ ~ ~  
(PARAMETER BLTe 0375). r,T - -m, 
AND RETURNS ALONG lm(*q - L 

524 10.5) 

0.86 1 1.42 (0.4) 
(0.341 

CU APPROXIMATION I:[/ y 
I 0.0 0.2 0.4 0.6 0.8 1.0 1.2 I- TRUE ELT 

z = eST 
ST-PLANE - Z-PLANE 

Fig. 5 .  Root-locus plots for second-order DPLL @hase/phase-rate feedback, no computation delay, and standard underdamping) as 
function of LILT. 
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TABLE IX 
Transient-Free Initialization of DPLLs With PhasePhase Rate Feedback 

For all orders: 

arc tangent phase extractor 
orcsin(l7r Jga) /2x ,  sine phase extractor 

where all phase values are measured in cycles. Thus, 
model phase for the nfh interval, after accounting for 
tracking error, is given by 

(57) 

$11 - $ss 

$n - arcsin(2~$,,)/2~ 
for an arctan extractor 
for a sine extractor 

By respectively equating (56)-(59) with (51)-(54), one 
obtains a set of equations whose number is equal to 
the number of unknowns, where the unknowns are 
$ss and the loop sums. Thus, these unknowns can be 
expressed in terms of the derivatives of input phase 
for a given a set of loop constants. Results for loops of 
order one to four are presented in Table IX. 

To complete initialization of the loop, an estimate 
of starting model phase must be computed. To be 
exact, this estimate must account for steady-state phase 
error. For an arctangent phase extractor, tracking error 
is equal to residual phase (neglecting system-noise 
error and possible cycle ambiguities). For a sine phase 
extractor, however, steady-state tracking error becomes 

Based on a priori values for signal phase and its 
derivatives for “phantom” interval n, one can therefore 
calculate at the “completion” of that phantom interval 
the values for loop sums and model phase that would 
have been present under steady-state tracking. These 
quantities can be used to initialize the (n + 1)th 
interval as though the nth interval had been processed. 
In predicting the (n + 1)th phase rate by means of 
(4), however, the residual phase for the phantom 
nth interval is set equal to JsS. Loop updates are 
carried out in the normal fashion for subsequent 
intervals. In this way, the loop can be initialized 
for the (n + 1)th interval as though steady-state 
lock had been established and no transients will be 
observed. 

The preceding derivation assumed a signal with 
appropriate polynomial phase so that a steady-state 
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phase error would develop. Under less ideal dynamics, 
the above initialization process will not eliminate 
transients, but can greatly assist direct acquisition with 
higher order loops. Similarly, if the derivatives of signal 
phase are known, but phase is not, the loop sums can 
be initialized as prescribed, with initial loop phase 
arbitrarily set to zero. Again, loop acquisition will be 
greatly enhanced. 

VI. TWO MEASURES OF LOOP PERFORMANCE 

A. Mean Time to First Cycle Slip 

Simulations have been carried out to determine 
mean time to first cycle slip, (TIst), for loops with 
phase and phase-rate feedback, no computation delay, 
supercritical damping, and a sine phase extractor with 
perfect amplitude normalization. The tracking-error 
criterion for detecting a cycle slip was I$ - $ 1  > 0.75 
cycles. After each slip, the loop was reinitialized, as 
described in Section V, with perfect a priori so that it 
would start off in steady-state lock with no transients. 
A Gaussian random-number generator simulated noise 
for the counter-rotation sums. 

Loops of 1st to 4th order have been simulated on 
the basis of the loop constants in Table V. Assumed 
values of BLT ranged between 0.02 and 2.0 and loop 
SNR between 0 and 10 dB. Example results are shown 
in Fig. 6(a), where BL multiplied by mean time to first 
cycle slip is plotted versus loop SNR for BLT = 0.02 
and 0.5. We define loop SNR, SNRL, according to 
the definition that leads to a tracking error variance, 
(($ - $)2) in radians, equal to ~ / S N R L  for high SNR 
values. In terms of cycles slips, loop performance 
deteriorates somewhat as loop order increases, given a 
fixed-loop SNR. For a given loop order and loop SNR, 
however, cycle-slip performance improves as BLT 
increases, as shown in more detail in Fig. 6(b) where 
BL(T*,,) is plotted versus BLT for 1st- to 4th-order 
loops, given a loop SNR of 10 dB. With a 3rd-order 
loop, for example, Fig. 6(b) indicates that BL(Tlst) 
improves by two orders of magnitude when BLT is 
increased from 0.02 to 0.5. 

As a test of the simulation software, the cycle-slip 
criteria have been changed to Viterbi’s criteria in his 
exact closed-form solution [7] for a first-order loop 
in the CU limit, and the simulations rerun. ’Tb within 
a statistical error of about lo%, our first-order loop 
results for BL(Tlst) at low BLT values agree with 
Viterbi’s theoretical predictions up to the maximum 
loop SNR tested, SNRL = 4 dB. 

B. Steady-State Phase Error 

Loop performance at large values of BLT has also 
been assessed in terms of the steady-state phase error 
(static phase error). In the CU limit, steady-state phase 
error (#ss) is proportional to BEN for an Nth-order 

rl-- 
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Fig. 6. Mean time to first cycle slip for DPLL with supercritical 
damping, phase/phase-rate feedback, no computation delay, and 

sine phase extractor. 

loop, as can be derived by expressing KN for each loop 
order in %.ble I1 in terms of BL and then substituting 
the result in the expression for $ss in Thble IX. For 
large values of BLT,  however, #,& in a DU loop is 
not proportional to BEN,  as illustrated in Fig. 7. Fig. 
7(a) plots as a function of BLT the dimensionless 
coefficient required to multiply the CU-limit form for 
dss. These plots pertain to loops of order 1 to 4, with 
phase and phase-rate feedback and with the indicated 
damping and computation delay. At BLT = 0, the 
coefficient is equal to the CU-limit value, As BLT 
increases, the increase in this coefficient relative to 
the zero-BLT value is a measure of the “excess” 
iss relative to the nominal CU-limit values. As Fig. 
7(a) indicates, for example, $ss at BLT = 0.5 for a 
third-order, standard underdamped loop, is about three 
times larger than the CU limit would predict. 

Fig. 7@) plots the corresponding effective loop 
bandwidth as determined from is,, where “effective” 
denotes the decrease in bandwidth relative to 
the BF model. For example, the effective bandwidth 
is about 0.6 times the true loop bandwidth when 
BLT = 0.5 for a second-order loop. Thus, the effective 
“dynamic” loop bandwidth, with regard to dS,, 
becomes progressively smaller relative to loop noise 
bandwidth as BLT increases. 



41h ORDER and fourth-order loops becomes more straightforward 
and understandable. 

acquisition in high-order loops, a method for direct, 
transient-free acquisition has been presented. Given 
adequate a priori estimates of phase and its derivatives, 
steady-state signal lock can be obtained directly with 
third- and fourth-order loops without first acquiring 
with lower order loops. For appropriate applications, 
use of this method can allow direct and reliable 

To improve the versatility and reliability of 
100 - 

BL 

Fig. 7. 
with 

I I I I I I 
1 I ; BLT 

0.1 

(4 
CRITICALLY DAMPED ------ STANDARD UNDERDAMPED 

o.2 t 
Quantities related to steady-state phase error in DPLLs 
phase/phase-rate feedback and no computation delay. 

VII. CONCLUSIONS 

A first-principles analysis of DPLLs has led to a 
new approach for parameterizing loops that is not 
complicated by analog considerations. Loop constants 
are determined from loop roots that can be selectively 
placed in the s-plane on the basis of loop noise 
bandwidth and new independent parameters that have 
simple and direct significance relative to root-specific 
decay-rate and root-specific damping. The formalism 
can be systematically extended to loops of arbitrary 
order and provides great flexibility in directly placing 
roots in the s-plane. 

fourth order are obtained in closed form as functions 
of the new parameters. In a solution for a DU loop, 
however, complexity of the equations leads to a 
numerical approach. The analysis has been applied 
to loops with either phase and phase-rate feedback or 
phase-rate-only feedback, with supercritical damping 
or standard underdamping and with either zero 
computation delay or a computation delay equal to 
one update interval. With the new parameterization, 
exact selection of true loop noise bandwidth and 
root-by-root selection of damping and relative 
decay-rate can be carried out for high order loops, 

In the CU limit, loop constants for loops of first to 

acquisition with a third- or fourth-order loop at 
smaller loop bandwidth and lower signal strength than 
traditional approaches. 

As a measure of the performance of large-BLT 
loops, simulations of loop behavior in terms of 
mean time to first cycle slip have been carried out 
for loops of first- to fourth-order based on the new 
parameterization. The simulated loops have phase 
and phase-rate feedback, supercritical damping, and no 
computation delay. For a given loop bandwidth, loops 
with larger BLT exhibit a considerably better (larger) 
mean time to first cycle slip than those with smaller 
BLT values. 

Loop performance has also been assessed on the 
basis of steady-state phase error. As BLT increases 
for a fixed value of BL, the steady-state phase error 
is essentially constant for small BLT values (e.g., 
BLT 5 0.02) but increases for larger values of BLT. 
Thus, by this measure loop performance with respect 
to dynamics deteriorates as BLT increases, given 
fixed BL. 
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