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An Introduction to Digital Filters 
An Introduction to Integration 

Much of  the characteristic sound of  classic synthesizers comes from the creative use of  

filters. In the “East Coast” or subtractive approach to synthesis pioneered by Robert Moog, a 

harmonically rich waveform is shaped by the use of  one or more filters. 

A filter is any device that accepts an input signal, modifies it in some way and produces an 

output signal. Mathematically we say that a filter has a transfer function that defines the output for 

a given input. Determining this function allows us to model the behavior of  the filter. 

The types of  filters we will be discussing modify the frequency spectrum of  the input signal, 

that is, they filter out some portion of  the frequencies present in the input signal. The bass and 

treble controls on an amplifier are a good example of  this type of  filter. 

At the heart of  every frequency spectrum filter is a component that stores some portion of  

the the input signal. This component is often referred to as an “integrator”. For those unfamiliar 

with calculus the term may be confusing. In this article I hope to explain the concept of  

integration and how it relates to filter design. 

Picture a measuring cup under a faucet. Initially the cup is empty. If  we turn on the faucet, 

the cup will gradually fill with water. If  we know the flow rate of  the faucet, integration allows us 

to answer the question , “how much water is in the cup?”. Simple you say.  Just read the marking 

on the cup. In this case the cup is serving as our integrator. 

What if, instead, the water is flowing down the drain and all we know is the flow rate of  the 

faucet (measured in gallons per minute) and the time. If  the faucet is flowing at a constant rate, 
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the problem is simple. If  the flow rate is !  and the faucet is on is for !  minutes then the total 

amount of  water is !  times ! . If  we call the total amount of  water ! , then we can say ! . 

What if  we adjust the faucet while the water is running? Now how will we figure out how 

much water has flowed?. If  we know the flow rate !  at each instant we should still be able to 

figure this out. Let’s call each instant of  time delta ! , or !  for short. The amount of  water that 

flows in this instant is ! . If  we add all of  these amounts up we should have the total amount of  

water. This process is referred to as integration. It is expressed using an integral symbol !  which 

represents the summation of  all the instantaneous values We can now write our equation as: 

	 	 	 !  

Translated, this means “take the flow rate at each instant and multiply it by the length of  

each instant of  time and add them all up from time = 0 to time = m. 

Here’s a graph of  our water flow: 

For each little slice of  time we are multiplying the height of  the slice by its width, or 

calculating it’s area. The sum of  all these areas is the value of  the integral, which is also the total 

area under the curve. Because each slice is actually a small rectangle, in order to obtain the 
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correct answer we must make the slices infinitely narrow. Otherwise the slope of  the curve at the 

top of  each rectangle will cause our calculation to be incorrect. 

A Simple Analog Filter 
 We can apply the same process to analyzing the behavior of  a simple filter. Consider a 

capacitor. A capacitor is a device for storing an electrical charge. This is just like our measuring 

cup, only it holds electrons rather than water. A capacitor stores electric charge in the same way 

our cup stores water and the electrons flowing through the wire into the capacitor are the same as 

the water flowing through our faucet. The flow rate of  the faucet is equivalent to the current into 

the capacitor, and the height of  water in the measuring cup is equivalent to the voltage across the 

capacitor. 

Here we have a simple resistor - capacitor circuit. This circuit forms a simple lowpass filter.  

Let us call the input to the filter at time t, !  and the output at time t,  ! . When the input 

voltage !   is greater than the output voltage ! , current flows through the resistor and the 

capacitor is charged, and when the input voltage is below the output voltage, the current flows 

the other way and the capacitor discharges.  

Because the resistor and capacitor form a 

voltage divider, when the input voltage is 

changing, only a portion of  the input 

signal appears at the output. This smooths 

out the fluctuations in the input signal.   

From the diagram you can see that the 

input voltage equals the sum of  the voltage across the resistor and the voltage across the 

capacitor. If  we label the voltage at time t across the capacitor as !  and the voltage across the 

resistor as !  we have: 

x (t) y(t)

x (t) y(t)

vc(t)

vr(t)
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!  
Since the output from the filter is connected to the top of  the capacitor 

!  
 Ohm’s law states that the voltage across the resistor is equal to the current through the 

resistor multiplied by the resistance (! ) where I is the current and R is the resistance, so we 

know that the voltage across the resistor !  

so  !  

The voltage on the capacitor !  multiplied by the capacitance C is equal to the total 

charge on the capacitor ! . 

 !  

but from above  !  

so !  or 

!  

The charge !  is also like the amount of  water in our cup. In the same way that the total 

amount of  water in the cup is the integral of  the flow over time, the total charge on the capacitor 

is the integral of  the current into the capacitor over time. So the total charge is given by: 

	 	 	 !  

Since !  we can say 

	 	 	 !  

From above we have 	 !  so 

x(t) = vc(t) + vr(t)

y(t) = vc(t)

V = IR

vr(t) = IR

I =
vr(t)

R

vc(t)

qc

Cvc(t) = qc

y(t) = vc(t)

Cy(t) = qc

y(t) =
qc

C

qc

qc =
t

∫
t0

Idt

y(t) =
qc

C

y(t) =
t

∫
t0

I
C

dt

I =
vr(t)

R
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	 	 	 !  

and since 	 !  

 	 	 	 !  so if  we substitute for !  

	 	 	 !  

	 	 	 !  

We know that !  so 

	 	 	 !  

This assumes that the capacitor had no charge at time = 0. If  the voltage on the capacitor 

at time = 0 is !  then the voltage at any time is:  

	 	 !  

RC is referred to as the time constant of  the filter and represents the decay time for the 

circuit. For resistance in ohms and capacitance in farads the time constant will be in seconds. The 

value !  is a measure of  the frequency response of  our filter.  !   is expressed in radians per 

second and is typically replaced by !  which is the cutoff of  the filter (in radians per second). 

Omega !  is often used to represent a circular frequency, and the c subscript is used to represent 

y(t) =
t

∫
t0

vr(t)
RC

dt

x(t) = vc(t) + vr(t)

vr(t) = x(t) − vc(t) vr(t)

y(t) =
t

∫
t0

x(t) − vc(t)
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dt

y(t) =
t
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t0

1
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(x(t) − vc(t))dt

y(t) = vc(t)

y(t) =
t

∫
t0

1
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(x(t) − y(t))dt
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y = y(t0) +
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1
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cutoff. Because there are !  radians in a circle, the cutoff  frequency in Hz is given by ! . So, 

putting it all together gives us our final equation for our filter: 

	 	 !  

This equation describes the behavior of  a simple RC lowpass filter network. This particular 

filter is a first-order filter, which means there are no terms in the equation that are squared, cubed 

etc. You will also see these referred to as single pole filters which is related to the representation 

of  the filter’s behavior using complex numbers. 

All first order filters have a slope of  6 dB per octave which means that for each octave 

change in the input frequency the response will change by 6 dB. For a low pass filter such as this, 

that means that if  our cutoff  frequency is 400 Hz then at 800 Hz the output will be reduced by 6 

dB and at 1600 Hz it will be reduced by 12 dB, etc. By using the tools of  calculus it is possible to 

solve this equation for a given input signal and determine how the filter behaves. You can 

calculate the frequency response, phase response, etc. Fortunately it’s not necessary for us to solve 

the equation in order to build a digital model of  the filter. 

A Digital Model of  the Filter 
All audio in an application like Audulus is represented digitally. This means that an audio 

signal is a stream of  numbers representing the shape of  the waveform. Each number is a measure 

of  the height of  the wave for that sample. The sample rate for Audulus is currently 44.1 kHz. 

This means that for each second of  sound there are 44100 samples. For the analog filter the 

integrator in the filter is the sum of  the instantaneous values of  the equation. For our integration 

to be correct we have to make each instant infinitely small. In the digital realm, we don’t have a 

continuous signal, we only have a series of  values, one for each time we sample the signal, so it’s 

not possible to make the interval infinitely small.  The smallest slice we can work with is one 

sample wide.  

As a first approximation, we can simply take our sample values, multiply them by the length 

of  time for each sample and add them all up. Of  course, if  we had all the samples available, this 

2π
ωc

2π

y = y(t0) +
t

∫
t0

ωc(x(t) − vc(t))dt
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would be a simple process, but since we want to do this continuously as new samples arrive (we 

don’t want to wait until we’ve finished making our sound before we hear it) we need a way to do 

it step by step.  For each new sample we want to take our current value and add the new sample 

to it. Our integrator becomes: 

integrator output= previous output + integrator input * the time for each sample. If  our 

sample time is !  and the input to the integrator for sample t is !  and the output is !  then: 

 !  

where  !  represents the integrator output from the previous sample. 

From the equation for the analog filter, we know that the input to the integrator for our low 

pass filter should be: 

!  
So at any sample t (assuming ! ) the filter output will be given by 
!  
From this you can see that we need a way to recall the value of  our integrator for the last 

sample. Fortunately Audulus has just such a node. The Unit Delay node in Audulus (or the  !  

node) outputs the previous sample for its input, so if  we add a unit delay to the output of  our 

integrator, we will be able to access the previous value ! . We can construct an integrator in 

Audulus as follows: 

T In(t) y(t)

y(t) = y(t − 1) + In(t)T

y(t − 1)

In(t) = (x(t) − y(t))ωc

y(t0) = 0

y(t) = y(t − 1) + (x(t) − y(t − 1))ωcT

z−1

y(t − 1)
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This takes an input value, adds the previous output value and sends it to output. We know 

that the sample rate for Audulus is 44.1 kHz so the time for each sample is 1/sample rate or in 

Audulus: 

We can now build a model of  our filter: 

Note that the patch contains two unit delays, one is part of  the integrator and the other for 

the previous sample that is added to the integrator. Since both z-1 nodes are attached to the 

integrator output, they both have the same value so we can simplify the patch by removing one 

of  the unit delays. It would also be possible to condense the Add and Multiply nodes into a single 

Expression node, but this approach more clearly demonstrates the visual nature of  programming 

in Audulus. 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This is the simplest implementation of  a first order low-pass filter, however it isn’t a 

particularly good one. As we saw in the analog filter, when we integrate a function we are 

calculating the area under the curve of  the function. Our current approach takes the value of  

sample t and multiplies it by the sample time T. This calculates a rectangular area. 

This is okay as long as T is small compared to the rate of  change from sample to sample, or 

to put it another way, so long as the maximum frequency is much less than the sample rate.  
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A better approximation is  to calculate the  area of  the trapezoid from t-1 to t. 

The area of  the trapezoid is: 

	 	 	  !  

or 	 	 !  

Recreating our integrator using the trapezoid instead of  the rectangle gives us: 

( y(t) − y(t − 1)
2

+ y(t − 1)) T

y(t) + y(t − 1)T
2
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Inserting this into our filter gives us: 

It turns out that using the trapezoid integrator has one disadvantage. Although it gives us a 

better approximation to the area under the curve, the trapezoid warps the frequency response of  

the filter. In order to compensate for this it is usual to pre-warp the coefficients. Without going into 

the math, if  we replace our current version with: 
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Where g is defined as follows: 

! 	 	 wd = 2*pi*fc	 	 fc = cutoff  frequency 

! 	 	 	 T = 1/fs 	 	 fc = sample frequency 

! 	 wa = (2/T)*tan(wd*T/2) 

! 		 	 g = wa*T/2 

Or in Audulus: 

If  we combine this with our filter model we get the complete module: 

This is the completed digital model of  the analog RC low pass filter we diagrammed at the 

beginning. It’s also how the built-in LowPass filter node in Audulus works internally. Since the 

built-in node is somewhat more efficient than our module, it’s generally preferable to use the 

built-in node. 

ωd = 2π fc

T =
1
fs

ωa =
2ta n ( ωdT

2 )
T

g =
ωaT

2
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What’s alpha? Alpha is another way to represent the cutoff  frequency of  the filter. For use 

with Audulus alpha is calculated as: 1-(fc*2*pi)/(fs+fc*2*pi) where fs is the sample frequency and 

fc is the cutoff  frequency. Note in some references you will find alpha defined as (fc*2*pi)/

(fs+fc*2*pi) instead. The high pass node is similar to the low pass node. In fact, if  you subtract 

the output of  the low pass node from the input to the node, you will have a high pass filter.  

Of  course it’s simpler to use the built-in HighPass node. As mentioned earlier, both of  these 

nodes are first order filters and they have a cutoff  slope of  6dB per octave which is not very steep. 

They are very efficient however and are a good choice for many filtering applications.  

There are a few other filters provided with Audulus as basic nodes: The Filter node is a 2nd 

order low pass filter (12dB per octave) with resonance. Resonance is a peak in the filter response 

close to the cutoff  frequency. There is also the BiQuad (bi-quadratic) node which allows you to 

create various types of  2nd order filters by inputting the appropriate coefficients. You will find 

many different filter modules built using these and other nodes in the Audulus library and online 

on the Audulus Forum.  

There are many different types of  filters used in synthesizers and they each have different 

characteristics and different applications. Because filters play a critical part in the “sound” of  
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most hardware synths, creating an accurate digital model of  these filters is an important step in 

attempting to recreate the sound of  the synth digitally.  In addition to the built-in filter nodes, 

Audulus provides us with the tools needed to create digital models of  many of  these filters. This 

introductory tutorial covered the simplest analog filter and one digital model, but there is much 

more information readily available for those that are interested. These are a few references you 

may find useful. Many are available on the Audulus forum or can be found online by searching 

for the title using Google. The first two are particularly good for musical applications if  you can 

slog through the math. 
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